Numerical simulation of wet granulation in a continuous granulator is carried out using Discrete Element Method (DEM) to discover the possibility of formation of seeded granules in a continuous process with the aim of reducing number of experimental trials and means of process control. Simple and scooped drum granulators are utilized to attain homogenous seeded granules in which the effects of drum rotational speed, particles surface energy, and particles size ratio are investigated. To reduce the simulation time a scale-up scheme is designed in which a dimensionless number (Cohesion number) is defined based on the work of cohesion and gravitational potential energy of the particles. Also a mathematical/numerical method along with a MATLAB code is developed by which the percentage of surface coverage of each granule is predicted precisely. The results show that use of continuous granulator is promising provided that a high level of shear is considered in the granulator design, i.e. using baffles inside drum granulators is essential for producing seeded granules. It is observed that the optimum surface energy for seeded granulation in scooped granulator (used in this study) with rotational speed of 50 rpm is 3 J/m 2 , which is close to the value predicted by the concept of Cohesion number.It is also shown that increasing the seed/fine size ratio enhances the seeded granulation both quantitatively (60% increase in seeds surface coverage) and qualitatively (more homogeneous granules).
This is a repository copy of Assessment of blending performance of pharmaceutical powder mixtures in a continuous mixer using Discrete Element Method (DEM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.