The tissue engineering field has developed in response to the shortcomings related to the replacement of the tissues lost to disease or trauma: donor tissue rejection, chronic inflammation and donor tissue shortages. The driving force behind the tissue engineering is to avoid the mentioned issues by creating the biological substitutes capable of replacing the damaged tissue. This is done by combining the scaffolds, cells and signals in order to create the living, physiological, three-dimensional tissues. A wide variety of skin substitutes are used in the treatment of full-thickness injuries. Substitutes made from skin can harbour the latent viruses, and artificial skin grafts can heal with the extensive scarring, failing to regenerate structures such as glands, nerves and hair follicles. New and practical skin scaffold materials remain to be developed. The current article describes the important information about wound healing scaffolds. The scaffold types which were used in these fields were classified according to the accepted guideline of the biological medicine. Moreover, the present article gave the brief overview on the fundamentals of the tissue engineering, biodegradable polymer properties and their application in skin wound healing. Also, the present review discusses the type of the tissue engineered skin substitutes and modern wound dressings which promote the wound healing.
Quantum dots (QDs) with a nanoscale size range have attracted significant attention in various areas of nanotechnology due to their unique properties. Different strategies for the synthesis of QD nanoparticles are reported in which various factors, such as size, impurities, shape, and crystallinity, affect the QDs fundamental properties. Consequently, to obtain QDs with appropriate physical properties, it is required to select a synthesis method which allows enough control over the surface chemistry of QDs through fine‐tuning of the synthesis parameters. Moreover, QDs nanocrystals are recently used in multidisciplinary research integrated with biological interfaces. The state‐of‐the‐art methods for synthesizing QDs and bioconjugation strategies to provide insight into various applications of these nanomaterials are discussed herein.
Reactivation of telomerase, which is observed in more than 85% of all known human tumours, is considered a promising tumour marker for cancer diagnosis. With respect to the biomedical importance of telomerase, we have developed a simple strategy based on liposomal fluorescent signal amplification for highly sensitive optical detection of telomerase activity using liposome-encapsulated cadmium telluride quantum dots. In this strategy, telomerase extracted from A549 cells elongated the biotinylated telomerase substrate primer, which was then immobilized on streptavidine-coated microplate wells. After the hybridization of the telomerase-elongated product with biotinylated capture probe, streptavidin was added to the assembly. In the next step, biotinylated liposome was conjugated with capture probe through streptavidin. Finally, QD-encapsulated liposomes were disrupted by Triton X-100, and the fluorescence intensity of the released QDs was measured to detect telomerase activity. The results showed that the proposed nanobiosensor was able to detect telomerase activity from as few as 10 A549 cells without the enzymatic amplification of telomerase extension products. In short, this method is not only convenient and sensitive, but also has a simple operating protocol and a wide detection range (10-5000 cells). A linear range was observed between 50 and 800 cells with a correlation coefficient of 0.982 and regression equation of y = 0.0444 x + 17.137. The proposed method is economical, more user-friendly, without error-prone PCR, with a wide detection range and simple operating protocol without the requirement for sophisticated equipment. Graphical Abstract Schematic representation of the QD-encapsulated liposome-based strategy to amplify fluorescence signal for optical detection of telomerase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.