This paper designs and implements a chattering-free terminal sliding mode control approach for a class of chaotic systems with unknown uncertainties. It considers sliding mode control (SMC) to deal with the dynamic model uncertainties of the chaos system, and uses a combination of SMC with an adaptive control approach to solve the upper boundaries problem of unknown model uncertainties and their estimation. Chattering is completely eliminated without over estimating the control gains by adopting an adaptive continuous barrier function in the dynamic switching function. Using the Lyapunov's stability theory, it was shown that the proposed scheme can guarantee the convergence of system states to the vicinity of the sliding surface in finite time. Additionally, the adoption of a sliding surface with a nonlinear and integral switching function resulted in removing the reaching phase of the sliding surface and yielding a controller that is robust to uncertainties from the start. The effectiveness of the proposed control method was assessed using three scenarios implemented to a Liu's uncertain chaotic system in MATLAB/Simulink environment. The obtained results confirmed the ability of the proposed approach to achieve continuous and smooth control rules for such chaotic systems. Among the main attributes of the proposed control method are its ability to completely eliminate chattering and yield a robust performance against model uncertainties and unknown external disturbances; common issues in chaotic systems.INDEX TERMS Terminal sliding mode control, chaotic systems, adaptive barrier function, chattering-free, unknown uncertainty.
In this paper, the theory of control is considered on nonlinear systems. A closed-loop controller with a strong idea has been introduced to track system states and guarantee asymptotically stability. The proposed method is the indirect terminal sliding mode control technique based on adaptive and fuzzy rules, which has used the continuous barrier function as a new approach in its design to improve the performance of this controller. One of the significant challenges in the sliding mode control method is the chattering phenomenon due to the discontinuous sign function in the control law. In the proposed approach, the control law is obtained continuously and smoothly due to the mentioned continuous function and subsequently solves the chattering problem. Another feature of the proposed method is the asymptotical stability of the system dynamics within finite time, which is proved based on the Lyapunov function. The proposed Lyapunov function includes the function of fractional power of a sliding surface. On the other hand, the obtained control law using the sliding mode method is estimated using the fuzzy system. The adaptive approach adjusts the fuzzy law parameters and the unknown bound of external disturbance.INDEX TERMS Finite-time stability, Continuous barrier function, Sliding mode, Fuzzy estimator.
In this paper, we numerically debrief an ultra-high sensitive surface plasmon resonance (SPR) biosensor utilizing thin layers of graphene oxide (GO) that have not been addressed adequately till now. By the deposition of GO on top of the metal-dielectric heterostructure, our proposed sensor can achieve higher sensitivity and higher Quality Factor (QF) simultaneously which has not been possible by the existing models to our knowledge. Because of its large surface area and sp 2 inside of an sp 3 matrix which is capable of confining π electrons, GO can form strong covalent bonds with biomolecules and hence enhanced lightmaterial interaction that made researchers contemplate to achieve increased sensitivity and figure of merit. Both the transfer matrix method and finite element method are exploited to perform extensive numerical analysis for optimizing the structure considering its sensitivity, full width half maximum (FWHM), and QF. This paper examines six different configurations of multilayer heterostructure containing prism-adhesivemetal-BaTiO 3 /BP-Gr/GO/MXene-sensing medium, and a noticeably enhanced performance is achieved using GO with a maximum sensitivity of 372 deg/RIU and QF of 88.11 RIU −1 in the range of refractive index (RI) 1.330 to 1.353. Moreover, the possibility of designing a tunable SPR sensor to operate at a broader range of analyte's RI is investigated, and 414 deg/RIU with 119.27 RIU −1 QF at 1.407 RI is achieved. The Electric field distribution, effects of different layers, and fabrication feasibility of the proposed sensor are explored, it is envisaged that this can be an appropriate apparatus for highly sensitive, rapid, and noninvasive label-free biosensing useful in experimental sensing protocols.
This research study proposes a continuous finite-time controller based on the adaptive tuning approach for the boost converters with unknown disturbances. A Lyapunov candidate function which contains an absolute function based on the fractional power of the sliding surface is employed to attain a smooth continuous control input. The recommended technique can eliminate the chattering phenomenon made by the sliding mode control signal and improve the control performance. Furthermore, the continuous adaptive-tuning control law is given to estimate the unknown bounds of exterior disturbances. The performance of the adaptive-tuned terminal sliding mode control law to the load variations and parametric uncertainties, and the input voltage, are studied in the MATLAB-Simulink environment. The obtained simulation results confirm the effectiveness of the suggested technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.