Since the number of elderly and patients who are in hospitals and healthcare centers are growing, providing efficient remote healthcare services seems very important. Currently, most such systems benefit from the distribution and autonomy features of multiagent systems and the structure of wireless sensor networks. On the one hand, securing the data of remote healthcare systems is one of the most significant concerns; particularly recent types of research about the security of remote healthcare systems keep them secure from eavesdropping and data modification. On the other hand, existing remote healthcare systems are still vulnerable against other common attacks of healthcare networks such as Denial of Service (DoS) and User to Root (U2R) attacks, because they are managed remotely and based on the Internet. Therefore, in this paper, we propose a secure framework for remote healthcare systems that consists of two phases. First, we design a healthcare system base on multiagent technology to collect data from a sensor network. Then, in the second phase, a layered architecture of intrusion detection systems that uses Support Vector Machine to learn the behavior of network traffic is applied. Based on our framework, we implement a secure remote healthcare system and evaluate this system against the frequent attacks of healthcare networks such as Smurf, Buffer overflow, Neptune, and Pod attacks. In the end, evaluation parameters of the layered architecture of intrusion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.