Process mining aims at gaining insights into business processes by analysing event data recorded during process execution. The majority of existing process mining techniques works offline, i.e. using static, historical data stored in event logs. Recently, the notion of online process mining has emerged, whereby techniques are applied on live event streams, as process executions unfold. Analysing event streams allows us to gain instant insights into business processes. However, current techniques assume the input stream to be completely free of noise and other anomalous behaviour. Hence, applying these techniques on real data leads to results of inferior quality. In this paper, we propose an event processor that enables us to effectively filter out spurious events from a live event stream. Our experiments show that we are able to effectively filter out spurious events from the input stream and, as such, enhance online process mining results.
Conformance checking techniques let us find out to what degree a process model and real execution data correspond to each other. In recent years, alignments have proven extremely useful in calculating conformance statistics. Most techniques to compute alignments provide an exact solution. However, in many applications, it is enough to have an approximation of the conformance value. Specifically, for large event data, the computation time for alignments is considerably long using current techniques which makes them inapplicable in reality. Also, it is no longer feasible to use standard hardware for complex process models. This paper, proposes new approximation techniques to compute approximated conformance checking values close to exact solution values in less time. These methods also provide upper and lower bounds for the approximated alignment value. Our experiments on real event data show that it is possible to improve the performance of conformance checking by using the proposed methods compared to using the state-of-the-art alignment approximation technique. Results show that in most of the cases, we provide tight bounds, accurate approximated alignment values, and similar deviation statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.