Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other normal parts of the breast image. In this study, 19 final different features of each image were extracted to generate the feature vector for classifier input. The proposed method not only determined the boundary of masses but also classified the type of masses such as benign and malignant ones. The neural network classification methods such as the radial basis function (RBF), probabilistic neural network (PNN), and multi-layer perceptron (MLP) as well as the Takagi-Sugeno-Kang (TSK) fuzzy classification, the binary statistic classifier, and the k-nearest neighbors (KNN) clustering algorithm were used for the final decision of mass class. Results: The best results of the proposed method for accuracy, sensitivity, and specificity metrics were obtained 97%±4.36, 100%±0 and 96%±5.81, respectively for support vector machine (SVM) classifier. Conclusions: By comparing the results of the proposed method with the results of the other previous methods, the efficiency of the proposed algorithm was reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.