Estimating the remaining useful life (RUL) of components is a crucial task to enhance reliability, safety, productivity, and to reduce maintenance cost. In general, predicting the RUL of a component includes constructing a health indicator (HI) to infer the current condition of the component, and modelling the degradation process in order to estimate the future behavior. Although many signal processing and data-driven methods have been proposed to construct the HI, most of the existing methods are based on manual feature extraction techniques and require the prior knowledge of experts, or rely on a large amount of failure data. Therefore, in this study, a new data-driven method based on the convolutional autoencoder (CAE) is presented to construct the HI. For this purpose, the continuous wavelet transform (CWT) technique was used to convert the raw acquired vibrational signals into a two-dimensional image; then, the CAE model was trained by the healthy operation dataset. Finally, the Mahalanobis distance (MD) between the healthy and failure stages was measured as the HI. The proposed method was tested on a benchmark bearing dataset and compared with several other traditional HI construction models. Experimental results indicate that the constructed HI exhibited a monotonically increasing degradation trend and had good performance in terms of detecting incipient faults.
Estimating the remaining useful life (RUL) of components is a crucial task to enhance the reliability, safety, productivity, and to reduce maintenance cost. In general, predicting the RUL of a component includes constructing a health indicator ( ) to infer the current condition of the component, and modelling the degradation process, to estimate the future behavior. Although many signal processing and data-driven based methods were proposed to construct the , most of the existing methods are based on manual feature extraction techniques, and need the prior knowledge of experts, or rely on a large amount of failure data. Therefore, in this study, a new data-driven method based on the convolutional autoencoder (CAE) is presented to construct the . For this purpose, the continuous wavelet transform (CWT) technique is used to convert the raw acquired vibrational signals into a two-dimensional image; then, the CAE model is trained by the healthy operation dataset. Finally, the Mahalanobis Distance (MD) between the healthy and failure stages is measured as the . The proposed method is tested on a benchmark bearing dataset and compared with several other traditional construction models. Experimental results indicate that the constructed exhibits a monotonically increasing degradation trend and has a good performance to detect incipient faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.