This study presents investigations about the physical mechanisms, origin, and methods to control the pattern dependency in selective epitaxial growth of Si1−xGex (x=0.14–0.32) layers. It is shown with a comprehensive experimental study that the local Si coverage of individual chips on patterned wafers is the main parameter for the layer profile in the epitaxial growth. This was explained by the gas depletion of the growth species in the low velocity boundary layer over the wafer. The gas depletion radius around each oxide opening was in the centimeter range which is related to the boundary layer thickness. The results from these experiments were applied to grow Si0.75Ge0.25 layers with B concentration of 4×1020cm−3 selectively for elevated source and drains in fully depleted ultrathin body silicon on insulator p metal oxide semiconductor field effect transistor (p-MOSFET) devices. The epitaxy control was maintained over a wide range of device sizes by optimized process parameters in combination with a wafer pattern design consisting of dummy features causing a uniform gas depletion over the chips on the wafer.
In the last decade, as semiconductor industry was approaching the end of the exponential Moore's roadmap for device downscaling, the necessity of finding new candidate materials has forced many research groups to explore many different types of non-conventional materials. Among them, graphene, CNTs and organic conductors are the most successful alternatives. Finding a material with metallic properties combined with field effect characteristics on nanoscale level has been always a dream to continue the ever-shrinking road of the nanoelectronics. Due to its fantastic features such as high mobility, optical transparency, room temperature quantum Hall effect, mechanical stiffness, etc. the atomically thin carbon layer, graphene, has attracted the industry's attention not only in the micro-, nano-, and opto-electronics but also in biotechnology. This paper reviews the basics and previous works on graphene technology and its developments. Compatibility of this material with Si processing technology is its crucial characteristic for mass production. This study also reviews the physical and electrical properties of graphene as a building block for other carbon allotropes. Different growth methods and a wide range of graphene's applications will be discussed and compared. A brief comparison on the performance result of different types of devices has also been presented. Until now, the main focus of research has been on the background physics and its application in electronic devices. But, according to the recent works on its applications in photonics and optoelectronics, where it benefits from the combination of its unique optical and electronic properties, even without a bandgap, this material enables ultrawide-band tunability.Here in this article we review different applications and graphene's advantages and drawbacks will be mentioned to conclude at the end.
Abstract-The influence of chip layout and architecture on the pattern dependency of selective epitaxy of B-doped SiGe layers has been studied. The variations of Ge-, B-content, and growth rate have been investigated locally within a wafer and globally from wafer to wafer. The results are described by the gas depletion theory. Methods to control the variation of layer profile are suggested.Index Terms-Loading effect, pattern dependency, selective epitaxy, SiGe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.