This paper investigates the hydraulics and fish guidance efficiency of a Horizontal Bar Rack-Bypass System (HBR-BS) installed at a hydropower plant with a design discharge of 33 m3/s. The HBR is placed at a horizontal rack angle of 38° to the flow direction with clear bar spacing of 20 mm. The BS has a vertical-axis flap gate with two openings. The HBR-BS complies with most literature design criteria. Velocity measurements were conducted using a moving-vessel Acoustic Doppler Current Profiler (ADCP). The fish monitoring study was conducted using a stow net, video, and ARIS sonar recordings. The fish monitoring calculations imply guidance efficiency of 84%, even for fish with total body lengths below 10 cm. Furthermore, the hydraulic results show that the flow field is favorable in terms of fish guidance due to a good alignment of the rack and the BS, corroborating the fish monitoring results. The results indicate that the HBR-BS functions not only as a physical barrier but also as a mechanical behavioral barrier for some small fish that are capable of physically passing the HBR. The present results are compared and discussed with the laboratory and field results from different studies in the literature.
Bed irregularities of water bodies play a significant role in many hydraulic and river engineering experiments and models. Accurate measurement of river geomorphology requires great fieldwork effort. Optimizing the dataset size of measured points will reduce the time and costs involved. In this study, the geomorphology of a gravel bed river reach was measured using different spatial acquisition methods. Digital elevation models were created for each measurement method and the volumes of under/overestimation were calculated. The results show that the sampling methods had more effect on the accuracy of the interpolated geomorphology than the density of the measured points. By choosing an optimized sampling method, the measurement efforts decreased to less than 50%, with negligible errors of around 15 m3 and 10 m3 over and underestimation, respectively, in a water body area of around 2200 m2. These findings help to provide more accurate geomorphological data with less effort as inputs for experimental and numerical models to derive better results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.