The demand for the use of carbon-fiber-reinforced plastics (CFRP) in rehabilitation of deteriorating infrastructure is increasing worldwide. The design characteristics of reinforced concrete or steel members can be enhanced significantly by epoxy bonding CFRP laminates to the critically stressed tension areas. There is, however, a concern regarding possible galvanic corrosion when carbon and steel are bonded together. This paper presents the result of a study on the galvanic corrosion between CFRP laminates and steel. A total of 38 specimens made of steel and carbon fibers were prepared and tested. Two simulated aggressive environments and three different amounts of epoxy coating were used in addition to samples with no coating at all. Furthermore, the effect of the sizing agent on the galvanic corrosion rate was investigated, and three different solvents were used to remove the sizing agents from the surface of the carbon fibers. Potentiodynamic polarization and galvanic corrosion tests were conducted. The results of the experiments showed the existence of galvanic corrosion; however, the rate of such corrosion could be decreased significantly by epoxy coating.
The use of advanced composite materials for rehabilitation of deteriorating infrastructure has been embraced worldwide. The conventional techniques for strengthening of substandard bridges are costly, time consuming, and labor intensive. Many new techniques have used the lightweight, high strength, and the corrosion resistance of fiber reinforced polymers ͑FRP͒ laminates for repair and retrofit applications. The load-carrying capacity of a steel-concrete composite girder can be improved significantly by epoxy bonding carbon fiber reinforced polymers ͑CFRP͒ laminates to its tension flange. This paper presents the results of a study on the behavior of steel-concrete composite girders strengthened with CFRP sheets under static loading. A total of three large-scale composite girders made of W355ϫ13.6 A36 steel beam and 75-mm thick by 910-mm wide concrete slab were prepared and tested. The thickness of the CFRP sheet was constant and a different number of layers of 1, 3, and 5 were used in the specimens. The test results showed that epoxy-bonded CFRP sheet increased the ultimate load-carrying capacity of steel-concrete composite girders and the behavior can be conservatively predicted by traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.