Assembly line balancing problem (ALBP) is the allocating of assembly tasks to workstations with consideration of some criteria such as time and the number of workstations. Due to the complexity of ALB, finding the optimum solutions in terms of the number of workstations in the assembly line needs suitable meta-heuristic techniques. Genetic algorithms have been used to a large extent. Due to converging to the local optimal solutions to the most genetic algorithms, the balanced exploration of the new area of search space and exploitation of good solutions by this kind of algorithms as a good way can be sharpened with some meta-heuristic. In this paper, the modified cellular (grid) rearranging-population structure is developed. The individuals of the population are located on cells according to the hamming distance value among individuals as neighbours before regenerations and a family of cellular genetic algorithms (CGAs) is defined. By using the cellular structure and the rearrangements, some of the family members can find better solutions compared with others in the same iterations, and they behave much more reasonably in order to acquire the solution in terms of the number of workstations and the smoothly balanced task assignment on criteria conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.