The dose delivery accuracy at LMU settings has to be ascertained before implementing conformal and IMRT (intensity- modulated radiotherapy) techniques. When there is dose nonlinearity, the treatment delivered with multiple small MU settings can result in significant error in dose delivery.
Position of effective electron source for shielded electron beams from a therapeutic linear accelerator
The effective electron source positions for the standard electron cones and for the shielded field sizes with cerrobend inserts were measured based on Inverse Square Law (ISL) and the Inverse Slope (IS) method for various electron energies.
The charge measurements were carried out using a 0.6 cc ion chamber (PTW, Type 30001) connected to a PTW Unidos E digital electrometer in a polystyrene phantom for electron beam energies of 6-18 MeV. The resultant charge for 100 MU setting was measured at nominal source to surface distances (SSDs) of 100-120 cm for cone and cerrobend defined field sizes.
The effective SSD (SSDeff) was found to be different for the same field size defined by electron applicator and the cerrobend shield placed in 25×25 cm standard cone. Strong dependency of SSDeff with field size and electron beam energy was noticed.
The results from the ISL and IS method are consistent, hence either of the two methods can be used to determine the effective source position. Whenever treatment is to be given with shielded electron portal, the SSDeff for that field needs to be determined. Same SSDeff as that of the standard cone can be used for minimum shielded electron portals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.