Filopodia detection using nanoplasmonic biosensors, where microposts were used to separate the cell membrane from filopodia and 3D nanopillars were used to monitor nanometer-sized filopodia.
Sustainable agriculture is the answer to the rapid rise in food demand which is straining our soil, leading to desertification, food insecurity, and ecosystem imbalance. Sustainable agriculture revolves around having real-time soil health information to allow farmers to make the correct decisions. We present an ion-selective electrode (ISE) electrochemical soil nitrate sensor that utilizes electrochemical impedance spectroscopy (EIS) for direct real-time continuous soil nitrate measurement without any soil pretreatment. The sensor functionality, performance, and in-soil dynamics have been reported. The ion-selective electrode (ISE) is applied by drop casting onto the working electrode. The study was conducted on three different soil textures (clay, sandy loam, and loamy clay) to cover the range of the soil texture triangle. The non-linear regression models showed a nitrate-dependent response with R2 > 0.97 for the various soil textures in the nitrate range of 5–512 ppm. The validation of the sensor showed an error rate of less than 20% between the measured nitrate and reference nitrate for multiple different soil textures, including ones that were not used in the calibration of the sensor. A 7-day-long in situ soil study showed the capability of the sensor to measure soil nitrate in a temporally dynamic manner with an error rate of less than 20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.