The use of Slurry Infiltrated Fiber Concrete (SIFCON) in reinforced concrete corner connections subjected to opening bending moments has been experimentally investigated. An experimental program has been carried out, in which fifteen specimens have been tested; six reinforced concrete joints, one fiber reinforced concrete joint, and eight SIFCON joints. Different reinforcing bars' details and different volumes of fraction of fibers (V f ) have been investigated. It was found that, in all the RC specimens, the joints failed before reaching the capacity of the connecting members. There was also a significant difference in the different joints' efficiency due to the variety of reinforcement details. The use of SIFCON in the joints increased both the joints capacity and ductility. The enhancement of the joint capacity and ductility could reach as high as 66% and 173%, respectively. This is attributed to the ability of the high volume of fibers to effectively bridge the cracks and retard the compression failure of the diagonal struts in the joints. The increase in the amount of fibers was proven to directly enhance the behavior of the SIFCON joints. In joints with V f =6% and 8%, the joint capacity exceeded the connecting members' capacity, leading to failure in the members before the joints, which is an advantageous requirement of the design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.