Unless humanity achieves United Nations Sustainable Development Goals (SDGs) by 2030 and restores the relatively stable climate of pre-industrial CO2 levels (as early as 2140), species extinctions, starvation, drought/floods, and violence will exacerbate mass migrations. This paper presents conceptual designs and techno-economic analyses to calculate sustainable limits for growing high-protein seafood and macroalgae-for-biofuel. We review the availability of wet solid waste and outline the mass balance of carbon and plant nutrients passing through a hydrothermal liquefaction process. The paper reviews the availability of dry solid waste and dry biomass for bioenergy with CO2 capture and storage (BECCS) while generating Allam Cycle electricity. Sufficient wet-waste biomass supports quickly building hydrothermal liquefaction facilities. Macroalgae-for-biofuel technology can be developed and straightforwardly implemented on SDG-achieving high protein seafood infrastructure. The analyses indicate a potential for (1) 0.5 billion tonnes/yr of seafood; (2) 20 million barrels/day of biofuel from solid waste; (3) more biocrude oil from macroalgae than current fossil oil; and (4) sequestration of 28 to 38 billion tonnes/yr of bio-CO2. Carbon dioxide removal (CDR) costs are between 25–33% of those for BECCS with pre-2019 technology or the projected cost of air-capture CDR.
In this paper we design a Simulink model which can be evaluate the concentration of Copper, Lead, Zinc, Cadmium, Cobalt, Nickel, Crum and Iron. So, this model would be a method to determine the contamination levels of these metals with the potential for this contamination sources with their impact. The aim of using Simulink environment is to solve differential equations individually and as given data in parallel with analytical mathematics trends. In general, mathematical models of the spread heavy metals in soil are modeled and solve to predict the behavior of the system under different conditions.
The rhizomes of Curcuma longa L. (CL) have been widely used in herbal medicines worldwide. It has been shown to possess prophylactic effects against oxidative stress. However, there is a paucity of information regarding the protective role of CL against oxidative stress in the absence of toxic agents. The aim of the study was to elucidate the antioxidative stress pharmacodynamics of CL. Eighteen 12-week-old Sprague-Dawley rats weighing about 300 ± 25 gm were divided equally into six groups. Four of the groups were supplemented with CL at 100 mg/kg b.w./day orally (P.O.) and labeled as 1st, 3rd, 5th, and 6th day groups. The PCx (positive control) group was given distilled water orally, and the NCx (negative control) group rats were provided with food and water ad libitum. Blood samples were collected, and rats were sacrificed on days 1, 3, 5, and 6 (2 h) posttreatment. The blood was used for oxidative stress enzyme analysis (SOD, GSH-Px, and MDA) and liver (ALT) and kidney (creatinine) function assay, and the liver was dissected for histology. The results revealed that CL exhibited an antioxidative stress effect in the liver and kidneys as indicated by the low levels of ALT and creatinine. In response to antioxidant enzymes, especially that of the 3rd-day treatment group, an increase in SOD and GSH-Px indirectly caused an alleviation of oxidative stress, leading to a much lower level of MDA. It was concluded that treatment with CL at 100 mg/kg b.w./per day for three consecutive days demonstrated the highest efficacy in abating oxidative stress in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.