This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence Newcastle University ePrints-eprint.ncl.ac.uk
Traditional iris segmentation methods give good results when the iris images are taken under ideal imaging conditions. However, the segmentation accuracy of an iris recognition system significantly influences its performance especially in nonideal iris images. This paper proposes a novel segmentation method for nonideal iris images. Two algorithms are proposed for pupil segmentation in iris images which are captured under visible and near infrared light. Then, a fusion of an expanding and a shrinking active contour is developed for iris segmentation by integrating a new pressure force to the active contour model. Thereafter, a noncircular iris normalization scheme is adopted to effectively unwrap the segmented iris. In addition, a novel method for closed eye detection is proposed. The proposed scheme is robust in finding the exact iris boundary and isolating the eyelids of the iris images. Experimental results on CASIA V4.0, MMU2, UBIRIS V1 and UBIRIS V2 iris databases indicate a high level of accuracy using the proposed technique. Moreover, the comparison results with the state-of-the-art iris segmentation algorithms revealed considerable improvement in segmentation accuracy and recognition performance while being computationally more efficient.
This paper considers secure simultaneous wireless information and power transfer (SWIPT) in cell-free massive multiple-input multiple-output (MIMO) systems. The system consists of a large number of randomly (Poisson-distributed) located access points (APs) serving multiple information users (IUs) and an information-untrusted dual-antenna active energy harvester (EH). The active EH uses one antenna to legitimately harvest energy and the other antenna to eavesdrop information. The APs are networked by a centralized infinite backhaul which allows the APs to synchronize and cooperate via a central processing unit (CPU). Closed-form expressions for the average harvested energy (AHE) and a tight lower bound on the ergodic secrecy rate (ESR) are derived. The obtained lower bound on the ESR takes into account the IUs' knowledge attained by downlink effective precoded-channel training. Since the transmit power constraint is per AP, the ESR is nonlinear in terms of the transmit power elements of the APs and that imposes new challenges in formulating a convex power control problem for the downlink transmission. To deal with these nonlinearities, a new method of balancing the transmit power among the APs via relaxed semidefinite programming (SDP) which is proved to be rank-one globally optimal is derived. A fair comparison between the proposed cell-free and the colocated massive MIMO systems shows that the cell-free MIMO outperforms the colocated MIMO over the interval in which the AHE constraint is low and vice versa. Also, the cell-free MIMO is found to be more immune to the increase in the active eavesdropping power than the colocated MIMO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.