Nine voltage-gated sodium channels are expressed in complex patterns in mammalian nerve and muscle. Three channels, Nav1.7, Nav1.8, and Na v1.9, are expressed selectively in peripheral damage-sensing neurons. Because there are no selective blockers of these channels, we used gene ablation in mice to examine the function of Nav1.7 (PN1) in pain pathways. A global Nav1.7-null mutant was found to die shortly after birth. We therefore used the Cre؊loxP system to generate nociceptor-specific knockouts. Na v1.8 is only expressed in peripheral, mainly nociceptive, sensory neurons. We knocked Cre recombinase into the Na v1.8 locus to generate heterozygous mice expressing Cre recombinase in Nav1.8-positive sensory neurons. Crossing these animals with mice where Na v1.7 exons 14 and 15 were flanked by loxP sites produced nociceptor-specific knockout mice that were viable and apparently normal. These animals showed increased mechanical and thermal pain thresholds. Remarkably, all inflammatory pain responses evoked by a range of stimuli, such as formalin, carrageenan, complete Freund's adjuvant, or nerve growth factor, were reduced or abolished. A congenital pain syndrome in humans recently has been mapped to the Na v1.7 gene, SCN9A. Dominant Na v1.7 mutations lead to edema, redness, warmth, and bilateral pain in human erythermalgia patients, confirming an important role for Na v1.7 in inflammatory pain. Nociceptor-specific gene ablation should prove useful in understanding the role of other broadly expressed genes in pain pathways.
Peripheral pain pathways are activated by a range of stimuli. We used diphtheria toxin to kill all mouse postmitotic sensory neurons expressing the sodium channel Nav1.8. Mice showed normal motor activity and low-threshold mechanical and acute noxious heat responses but did not respond to noxious mechanical pressure or cold. They also showed a loss of enhanced pain responses and spontaneous pain behavior upon treatment with inflammatory insults. In contrast, nerve injury led to heightened pain sensitivity to thermal and mechanical stimuli indistinguishable from that seen with normal littermates. Pain behavior correlates well with central input from sensory neurons measured electrophysiologically in vivo. These data demonstrate that Na(v)1.8-expressing neurons are essential for mechanical, cold, and inflammatory pain but not for neuropathic pain or heat sensing.
Human acute and inflammatory pain requires the expression of voltage-gated sodium channel Nav1.7 but its significance for neuropathic pain is unknown. Here we show that Nav1.7 expression in different sets of mouse sensory and sympathetic neurons underlies distinct types of pain sensation. Ablating Nav1.7 gene (SCN9A) expression in all sensory neurons using Advillin-Cre abolishes mechanical pain, inflammatory pain and reflex withdrawal responses to heat. In contrast, heat-evoked pain is retained when SCN9A is deleted only in Nav1.8-positive nociceptors. Surprisingly, responses to the hotplate test, as well as neuropathic pain, are unaffected when SCN9A is deleted in all sensory neurons. However, deleting SCN9A in both sensory and sympathetic neurons abolishes these pain sensations and recapitulates the pain-free phenotype seen in humans with SCN9A loss-of-function mutations. These observations demonstrate an important role for Nav1.7 in sympathetic neurons in neuropathic pain, and provide possible insights into the mechanisms that underlie gain-of-function Nav1.7-dependent pain conditions.
NaV1.8 is a voltage-gated sodium channel expressed only in a subset of sensory neurons of which more than 85% are nociceptors. In order to delete genes in nociceptive neurons, we generated heterozygous transgenic mice expressing Cre recombinase under the control of the NaV1.8 promoter. Functional Cre recombinase expression replicated precisely the expression pattern of NaV1.8. Cre expression began at embryonic day 14 in small diameter neurons in dorsal root, trigeminal and nodose ganglia, but was absent in non-neuronal or CNS tissues into adulthood. Sodium channel subtypes were normal in isolated DRG neurons. Pain behaviour in response to mechanical or thermal stimuli, and in acute, inflammatory and neuropathic pain was also normal. These data demonstrate that the heterozygous NaV1.8-Cre mouse line is a useful tool to analyse the effects of deleting floxed genes on pain behaviour.
A major unanswered question concerning "pain" circuitry is the extent to which different populations of primary afferent nociceptor engage the same or different ascending pathways. In the present study, we followed the transneuronal transport of a genetically expressed lectin tracer, wheat germ agglutinin, in Na(V)1.8-expressing nociceptors of the nonpeptide class. We found that interneurons of lamina II are at the origin of the major ascending circuits targeted by the nonpeptide nociceptors. These interneurons contact lamina V projection neurons, which in turn predominantly target fourth-order neurons in the amygdala, hypothalamus, bed nucleus of the stria terminalis, and to a remarkable extent, the globus pallidus. These circuits differ greatly from the lamina I-based projection that is targeted by the peptide class of nociceptors. Our results indicate that parallel, perhaps independent pain pathways arise from different nociceptor classes and that motor as well as limbic targets predominate in the circuits that originate from the nonpeptide population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.