The processing of crude oil often requires the extraction of a large amount of water. Frequently, crude oil is mixed with water to form water-in-crude oil emulsions as the result of factors such as high shear at the production wellhead and surface-active substances that are naturally present in crude oil. These emulsions are undesirable and require demulsification to remove the dispersed water and associated inorganic salts in order to meet production and transportation specifications. Additionally, the demulsification of these crude oil emulsions mitigates corrosion and catalyst poisoning and invariably maximizes the overall profitability of crude oil production. Recently, there has been growing research interest in developing workable solutions to the difficulties associated with transporting and refining crude oil emulsions and the restrictions on produced water discharge. Therefore, this paper reviews the recent research efforts on state-of-the-art demulsification techniques. First, an overview of crude oil emulsion types, formation, and stability is presented. Then, the parameters and mechanisms of emulsification formation and different demulsification techniques are extensively examined. It is worth noting that the efficiency of each of these techniques is dependent on the operating parameters and their interplay. Moreover, a more effective demulsification process could be attained by leveraging synergistic effects by combining one or more of these techniques. Finally, this literature review then culminates with propositions for future research. Therefore, the findings of this study can help for a better understanding of the formation and mechanisms of the various demulsification methods of crude oil to work on the development of green demulsifiers by different sources.
Quantum chemical calculations based on DFT are employed to study the electronic structure and binding affinity of chelators used in the removal of iron sulphide scales. Three chelating agents, EDTA, HEDTA, and DTPA, are considered in this work. The complexes showed a coordination number of 5, 6, and 7 for Fe 2þ and Fe 3þ ions with HEDTA, EDTA, and DTPA, respectively. However, regarding EDTA, Fe 3þ could coordinate with an additional water molecule and form a seven-coordinate complex. The calculated binding energies agreed with the experimental stability constants of the chelators in the order DTPA > EDTA > HEDTA for both Fe 2þ /Fe 3þ complexes. The binding free energies showed a spontaneous reaction with Fe 3þ having a stronger binding affinity than Fe 2þ due to electrostatic forces. This investigation provides insights regarding how chelators that are applied in iron sulphide scale removal may be designed by increasing the number of nitrogen atoms to above the number of carboxylate groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.