Bionanotechnology is a branch of science that has revolutionized modern science and technology. Nanomaterials, especially noble metals, have attracted researchers due to their size and application in different branches of sciences that benefit humanity. Metal nanoparticles can be synthesized using green methods, which are good for the environment, economically viable, and facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles (NPs), which have been generated using various materials. On the other hand, chemically produced nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials′ tunable features make them sophisticated tools in the biomedical platform, especially for developing new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders. Therefore, this review outlines the theranostic approach, the different plant materials utilized in theranostic applications, and future directions based on current breakthroughs in these fields.
The chiral drug candidates have more effective binding affinities for their specific protein or receptor site for the onset of pharmacological action. Achieving all carbon stereopure compounds is not trivial in chemical synthesis. However, with the development of asymmetric organocatalysis, the synthesis of certain vital chiral drug candidates is now possible. In this research, we have synthesized 3-(((1S,3S)-3-((R)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione (S,S,R-5) and have evaluated it potential as multi-target antidiabetic agent. The stereopure compound S,S,R-5 was synthesized with a 99:1 enantiomeric ratio. The synthesized compound gave encouraging results against all in vitro antidiabetic targets, exhibiting IC50 values of 6.28, 4.58, 0.91, and 2.36 in α-glucosidase, α-amylase, PTP1B, and DPPH targets, respectively. The molecular docking shows the binding of the compound in homology models of the respective enzymes. In conclusion, we have synthesized a new chiral molecule (S,S,R-5). The compound proved to be a potential inhibitor of the tested antidiabetic targets. With the observed results and molecular docking, it is evident that S,S,R-5 is a potential multitarget antidiabetic agent. Our study laid the baseline for the animal-based studies of this compound in antidiabetic confirmation.
The present work aimed at investigating the genetic diversity of the head louse Pediculus humanus capitis (P. humanus capitis) among infested primary school girls at Bisha governorate, Saudi Arabia, based on the sequence of mitochondrial cytochrome b (mt cyt b) gene of 121 P. humanus capitis adults. Additionally, the prevalence of pediculosis capitis was surveyed. The results of sequencing were compared with the sequence of human head lice that are genotyped previously. Phylogenetic tree analysis showed the presence of 100% identity (n = 26) of louse specimens with clade A (prevalent worldwide) of the GenBank data base. Louse individuals (n = 50) showed 99.8% similarity with the same clade A reference having a single base pair difference. Also, a number of 22 louse individuals revealed 99.8% identity with clade B reference (prevalent in North and Central Americas, Europe, and Australia) with individual diversity in two base pairs. Moreover, 14 louse individual sequences revealed 99.4% identity with three base pair differences. It was concluded that moderate pediculosis (~13%) prevailed among the female students of the primary schools. It was age-and hair texture (straight or curly)-dependent. P. humanus capitis prevalence diversity is of clades A and B genotyping.
Occupational ocular incidents as a result of splashing and foreign bodies are relatively common among dental practitioners in southwestern Saudi Arabia. The absence of postgraduate qualification, poor compliance with wearing eye protection and working long hours are predictors of ocular incidents. Awareness about eye safety is therefore considered mandatory for dental practitioners in southwestern Saudi Arabia. Also, dental clinic administrators should provide and promote the use of eye protection.
Malaria is a major public health concern, and any tangible intervention during the pre-elimination phase can result in a significant reduction in infection rates. Recent studies have reported that antigens producing cross-protective immunity can play an important role as vaccines and halt malaria transmission in different endemic regions. In this study, we studied the genetic diversity, natural selection, and discovered novel conserved epitopes of a high molecular weight rhoptry protein 2 (RhopH2) in clinical samples of Plasmodium knowlesi and Plasmodium vivax cross-protective domains, which has been proven to produce cross-protective immunity in both species. We found low levels of nucleotide diversity (P. knowlesi; π ~ 0.0093, SNPs = 49 and P. vivax π ~ 0.0014, SNPs = 23) in P. knowlesi (n = 40) and P. vivax (n = 65) samples in the PkRhopH2 cross-protective domain. Strong purifying selection was observed for both species (P. knowlesi; dS - dN = 2.41, p < 0.009, P. vivax; dS - dN = 1.58, p < 0.050). In silico epitope prediction in P. knowlesi identified 10 potential epitopes, of which 7 epitopes were 100% conserved within clinical samples. Of these epitopes, an epitope with 10 amino acids (QNSKHFKKEK) was found to be fully conserved within all P. knowlesi and P. vivax clinical samples and 80%–90% conservation within simian malaria ortholog species, i.e., P. coatneyi and P. cynomolgi. Phylogenetic analysis of the PkRhopH2 cross-protective domain showed geographical clustering, and three subpopulations of P. knowlesi were identified of which two subpopulations originated from Sarawak, Malaysian Borneo, and one comprised only the laboratory lines from Peninsular Malaysia. This study suggests that RhopH2 could be an excellent target for cross-protective vaccine development with potential for outwitting strain as well as species-specific immunity. However, more detailed studies on genetic diversity using more clinical samples from both species as well as the functional role of antibodies specific to the novel conserved epitope identified in this study can be explored for protection against infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.