Modern research has revealed that dietary consumption of flavonoids and flavonoids-rich foods significantly improve cognitive capabilities, inhibit or delay the senescence process and related neurodegenerative disorders including Alzheimer’s disease (AD). The flavonoids rich foods such as green tea, cocoa, blue berry and other foods improve the various states of cognitive dysfunction, AD and dementia-like pathological alterations in different animal models. The mechanisms of flavonoids have been shown to be mediated through the inhibition of cholinesterases including acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), β-secretase (BACE1), free radicals and modulation of signaling pathways, that are implicated in cognitive and neuroprotective functions. Flavonoids interact with various signaling protein pathways like ERK and PI3-kinase/Akt and modulate their actions, thereby leading to beneficial neuroprotective effects. Moreover, they enhance vascular blood flow and instigate neurogenesis particularly in the hippocampus. Flavonoids also hamper the progression of pathological symptoms of neurodegenerative diseases by inhibiting neuronal apoptosis induced by neurotoxic substances including free radicals and β-amyloid proteins (Aβ). All these protective mechanisms contribute to the maintenance of number, quality of neurons and their synaptic connectivity in the brain. Thus flavonoids can thwart the progression of age-related disorders and can be a potential source for the design and development of new drugs effective in cognitive disorders.
The family Polygonaceae is known for its traditional use in the management of various neurological disorders including Alzheimer’s disease (AD). In search of new anti-AD drugs, β-sitosterol isolated from Polygonum hydropiper was subjected to in vitro, in vivo, behavioral and molecular docking studies to confirm its possibility as a potential anti-Alzheimer’s agent. The in vitro AChE, BChE inhibitory potentials of β-sitosterol were investigated following Ellman’s assay. The antioxidant activity was tested using DPPH, ABTS and H2O2 assays. Behavioral studies were performed on a sub-strain of transgenic mice using shallow water maze (SWM), Y-maze and balance beam tests. β-sitosterol was tested for in vivo inhibitory potentials against cholinesterase’s and free radicals in the frontal cortex (FC) and hippocampus (HC). The molecular docking study was performed to predict the binding mode of β-sitosterol in the active sites of AChE and BChE as inhibitor. Considerable in vitro and in vivo cholinesterase inhibitory effects were observed in the β-sitosterol treated groups. β-sitosterol exhibited an IC50 value of 55 and 50 μg/ml against AChE and BChE respectively. Whereas, the activity of these enzymes were significantly low in FC and HC homogenates of transgenic animals. Molecular docking studies also support the binding of β-sitosterol with the target enzyme and further support the in vitro and in vivo results. In the antioxidant assays, the IC50 values were observed as 140, 120, and 280 μg/ml in the DPPH, ABTS and H2O2 assays respectively. The free radicals load in the brain tissues was significantly declined in the β-sitosterol treated animals as compared to the transgenic-saline treated groups. In the memory assessment and coordination tasks including SWM, Y-maze and balance beam tests, β-sitosterol treated transgenic animals showed gradual improvement in working memory, spontaneous alternation behavior and motor coordination. These results conclude that β-sitosterol is a potential compound for the management of memory deficit disorders like AD.
The use of essential oils (EOs) and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa, Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD) and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ), neurofibrillary tangles (NFTs), cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness.
BackgroundWe investigated Polygonum hydropiper L. (P. hydropiper) for phenolic contents, antioxidant, anticholinesterase activities, in an attempt to rationalize its use in neurological disorders.MethodsPlant crude extract (Ph.Cr), its subsequent fractions: n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq) and saponins (Ph.Sp) were evaluated for 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) free radical scavenging potential. Further, acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities were performed using Ellman's assay. Moreover, total phenolic contents of plant extracts were determined and expressed in mg of gallic acid equivalent per gram of dry sample (mg GAE/g dry weight).ResultsAmong different fractions, Ph.Cr (90.82), Ph.Chf (178.16), Ph.EtAc (203.44) and Ph.Bt (153.61) exhibited high phenolic contents. All fractions showed concentration dependent DPPH scavenging activity, with Ph.EtAc 71.33% (IC50 15 μg/ml), Ph.Bt 71.40% (IC50 3 μg/ml) and Ph.Sp 71.40% (IC50 35 μg/ml) were most potent. The plant extracts exhibited high ABTS scavenging ability i.e. Ph.Bt (91.03%), Ph.EtAc (90.56%), Ph.Sp (90.84%), Ph.Aq (90.56%) with IC50 < 0.01 μg/ml. All fractions showed moderate to high AChE inhibitory activity as; Ph.Cr, 86.87% (IC50 330 μg/ml), Ph.Hex, 87.49% (IC50 35 μg/ml), Ph.Chf, 84.76% (IC50 55 μg/ml), Ph.Sp, 87.58% (IC50 108 μg/ml) and Ph.EtAc 79.95% (IC50 310 μg/ml) at 1 mg/ml). Furthermore the BChE inhibitory activity was most prominent in Ph.Hex 90.30% (IC50 40 μg/ml), Ph.Chf 85.94% (IC50 215 μg/ml), Ph.Aq 87.62% (IC50 3 μg/ml) and Ph.EtAc 81.01% (IC50 395 μg/ml) fractions.ConclusionsIn this study, for the first time, we determined phenolic contents, isolated crude saponins, investigated antioxidant and anticholinestrase potential of P. hydropiper extracts. The results indicate that P. hydropiper is enriched with potent bioactive compounds and warrant further investigation by isolation and structural elucidation to find novel and affordable compounds for the treatment of various neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.