An understanding of protein folding relies on a solid foundation of a number of critical chemical concepts, such as molecular structure, intra-/intermolecular interactions, and relating structure to function. Recent reports show that students struggle on all levels to achieve these understandings and use them in meaningful ways. Further, several reports show that the visualization techniques employed to help students understand protein structure often lead to confusion and propagate further misconceptions. Here, we report on a lab exercise using computer-based modeling to support student proficiency in using and making models and understanding H-bonding and the hydrophobic effect in the context of protein folding. We analyzed student drawings and explanations of protein structure and found significant improvements from pre- to postlab, indicating that students improved their understanding of protein folding. Further, we report on how we systematically refined our laboratory materials based on student work.
Introductory Chemistry laboratories must go beyond "cookbook" methods to illustrate how chemistry concepts apply to complex, real-world problems. In our case, we are preparing students to use their chemistry knowledge in the healthcare profession. The experiment described here explicitly models three important chemical concepts: dialysis of small molecules (dye), reversible binding (dye binding to albumin), and competitive binding (dye and a competitor binding to albumin). Moreover, each concept is intimately related to a physiological phenomenon: dialysis is used to treat renal failure, drugs travel in the blood bound to albumin, and competitive albumin binding is a common drug− drug interaction. In the context of this simple series of experiments, students create models, use evidence to validate their models, and finally use their understanding to describe physiological phenomena. This laboratory experiment was implemented in a 100level course for predominantly prenursing majors. Student pre-and postlab models were examined, illustrating an improved conceptual understanding upon performing the lab and use of evidence to improve or support models. This experiment can be performed in 1 h, and can be adapted as a lecture demonstration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.