The present pandemic coronavirus disease 2019 (COVID-19) becomes a serious concern of global health threat which is elicited by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This paper focuses on a hitherto untouched material's engineering issue in human scientific fight against the well-known COVID-19. We show here the challenges and possibilities in engineering the surface to fight against survivability of SARS-CoV-2 that has caused a global pandemic. It is a fact that this virus causes severe acute respiratory syndrome and hence is nicknamed as e.g. SARS-CoV-2. In this perspective; the present work provides a critical survey about the severity of indirect contact mode transmission and survivability of various coronavirus families on different material surfaces. Furthermore, the possible direction for future research needed to develop antiviral material surfaces that can be regularly used to tackle such pandemic outbreaks is identified. Finally, the missing link between the biologist's approach and the material scientist's approach in tackling such pandemics is discussed along with scopes and challenges in future interdisciplinary research.
There is a significant interest in lightweight materials (like aluminum, magnesium, titanium, and so on) containing a wear resistance coating, in such industries as the automotive industry, to replace heavy components with lighter parts in order to decrease vehicle weight and increase fuel efficiency. Functionally graded coatings, in which the composition, microstructure, and/or properties vary gradually from the bond coat to the top coat, may be applied to lightweight materials, not only to decrease weight, but also to enhance components mechanical properties by ensuring gradual microstructural (changes) together with lower residual stress. In the current work, aluminum/tool-steel functionally graded coatings were deposited onto lightweight aluminum substrates. The graded coatings were then characterized in terms of residual stress and hardness. Results show that residual stress increased with an increase in deposition thickness and a decrease in number of layers. However, the hardness also increased with an increase in deposition thickness and decrease in number of layers. Therefore, an engineer must compromise between the hardness and stress values while designing a functionally graded coating-substrate system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.