Patients from the eastern province of Saudi Arabia who have sickle cell anemia have high circulating levels of fetal hemoglobin (hemoglobin F, 17 percent), and they therefore have a mild form of the disease. To examine the molecular basis of the elevated production of hemoglobin F, we searched for mutations in the promoter regions of the two hemoglobin F gamma-globin genes (G gamma and A gamma). The DNA sequences 450 bp (base pairs) upstream of both the G gamma and A gamma globin genes were normal except for a single-base cytosine-to-thymidine (C----T) substitution at -158 bp 5' to the cap (preinitiation) site of the G gamma-globin gene of the high-hemoglobin-F chromosome. We searched for an association between this -158 C----T substitution and the production of hemoglobin F and G gamma in normal Saudis and Saudis with sickle cell disease or trait. The substitution was present in nearly 100 percent of the patients with sickle cell disease or trait, and in 22 percent of the normal Saudis. Homozygosity for this mutation had no demonstrable effect on hemoglobin F production in the normal Saudi population. We conclude that this mutation is not uniquely responsible for the increase in hemoglobin F in Saudi patients. It may nevertheless have an important role in regulating hemoglobin F production, but its expression is complex and requires interaction with additional factors, such as hemolytic stress or other molecular determinants, possibly linked to the sickle cell gene.
This work was performed to explore the effect of polymorphism in multidrug resistant genes on plasma phenytoin levels and patient outcome to evaluate its involvement in drug resistance and toxicity, which is usually associated with antiepileptic drugs. Therefore, we genotyped the adenosine triphosphate-binding cassette subfamily B member 1 (ABCB1) in 100 patients suffering from partial or generalized tonic-clonic seizures and receiving phenytoin and 50 healthy control subjects. Steady state plasma phenytoin levels were also determined in the epileptic patients. Patients were evaluated after 3 and 6 months and were classified either as drug resistant patients or responsive patients. Results revealed 37 patients with drug responsive epilepsy and 63 patients with drug resistant epilepsy. Genotyping of our patients and control subjects revealed a genotype distribution of CC, CT, TT: 55.50%, 38.00%, 6.50% for drug resistant patients, CC, CT, TT: 13.50%, 46.00%, 40.50% for drug responsive patients, and CC, CT, TT: 24.00%, 48.00%, 28.00% for the control subjects. Patients with drug-resistant epilepsy were more likely to have the CC than the TT genotype compared with either responsive patients (P < 0.0001) or control subjects (P < 0.0001). The C polymorphism was over-represented among patients with drug-resistant epilepsy as compared with either those with drug-responsive epilepsy (P < 0.001) or control subjects (P < 0.001). Of the total 100 epileptic patients, 13 patients had their plasma phenytoin levels exceeding the maximum safe concentration. These 13 patients were more likely to have TT genotype than the CC genotype compared with the remainder of patients who had their plasma phenytoin levels at 20 microg/mL or less. Responsive patients showed no deviation from the control group regarding the genotype (P > 0.05) or allele frequency (P > 0.05). In conclusion, because most of the antiepileptic drugs are multidrug resistant gene substrates, the ABCB1 is thus an important candidate gene for potentially influencing the response to antiepileptic drugs. Our findings suggest that using genotype data may make it possible to safely reduce the time required to reach an effective dose. Therefore, it is a priority to assess the utility of dose adjustment on the basis of genotype for these medicines that are substrates for this gene.
Homozygous sickle cell disease in the eastern province of Saudi Arabia is clinically mild. Circulating fetal hemoglobin levels of 16.0 +/- 7.4% were found in these anemic patients, but only 1.09 +/- 0.97% in their sickle trait parents. To determine whether these sickle cell anemia patients inherit an increased capacity to synthesize fetal hemoglobin, a radioimmunoassay of fetal and adult hemoglobin was performed on erythroid progenitor (BFU-E)-derived erythroblasts from Saudi Arabian sickle cell patients and their parents. Mean fetal hemoglobin content per BFU-E-derived erythroblast from Saudi Arabian sickle cell patients was 6.2 +/- 2.4 pg/cell or 30.4 +/- 8.6% fetal hemoglobin (normal 1.1 +/- 0.7 pg/cell and 5.1 +/- 1.8%). Linear regression analysis of % HbF in peripheral blood versus % HbF per BFU-E- derived cell showed a positive correlation with an r of 0.65. The variance of the intrinsic capacity to produce HbF may account for almost 40% (r2) of the variance of circulating fetal hemoglobin but other factors, particularly selective survival of F cells, must also contribute significantly. Despite virtually normal HbF levels in sickle trait parents of these Saudi patients, mean fetal hemoglobin production per BFU-E-derived erythroblast in these individuals was elevated to 3.42 +/- 1.79 pg/cell or 16.1 +/- 6.4% fetal hemoglobin, and the magnitude of fetal hemoglobin production found in parents correlated with that of the patients. These data indicate that the high fetal hemoglobin in Saudi sickle cell disease is genetically determined but expressed only during accelerated erythropoiesis. Further evidence of such genetic determination was provided by analysis of DNA polymorphisms within the beta-globin gene cluster on chromosome 11. This revealed a distinctive 5′ globin haplotype (+ + - + +) on at least one chromosome 11 in all high F SS and AS tested. The precise relationship of this haplotype to HbF production in this population remains to be defined.
Merkel cell polyomavirus (MCV) is the causative agent for the majority of Merkel cell carcinoma (MCC) cases. Polyomavirus-associated MCC (MCCP) is characterized by the integration of MCV DNA into the tumor genome and a low tumor mutational burden. In contrast, nonviral MCC (MCCN) is characterized by a high tumor mutational burden induced by UV damage. Since the discovery of MCV, much work in the field has focused on understanding the molecular mechanisms of oncogenesis driven by the MCV tumor (T) antigens. Here, we review our current understanding of how the activities of large T (LT) and small T (ST) promote MCC oncogenesis in the absence of genomic instability. We highlight how both LT and ST inhibit tumor suppressors to evade growth suppression, an important cancer hallmark. We discuss ST interactions with cellular proteins, with an emphasis on those that contribute to sustaining proliferative signaling. Finally, we examine active areas of research into open questions in the field, including the origin of MCC and mechanisms of viral integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.