Competitive inhibition as a function of pH for the metalloendoprotease thermolysin by derivatives of L-alpha-(2-hydroxyphenyl)benzenepropanoyl-L- tryptophanylglycylglycine exhibits a diagnostic bell shape. Binding is maximal between two pKa values: on the acidic limb the apparent Ki value is regulated by an unchanging enzymic ionization (pKa 5.3) which is also seen in the substrate-hydrolysis kinetics (kcat/Km), whereas the alkaline limb for inhibition varies and depends specifically on the pKa of the phenolic group in the inhibitor. Although it should be the phenolate form of the inhibitor that co-ordinates more efficiently to the active-site Zn2+, the apparent Ki shifts from pH-independent at pH values immediately below the inhibitor's pKa to progressively weaker binding at higher pH. This is explained by an anomalous acidity for the exchangeable solvent molecule that is attached to enzymic Zn2+ in the absence of substrate or inhibitor. Since OH- cannot be displaced from the enzyme as readily as H2O, a compensating pKa of 5.3 possessed by Zn(2+)-bound water rationalizes the binding characteristics, yielding the level pH profile exhibited at intermediate pH values. Recognition of the implicit heightened Lewis acidity of the metal ion in thermolysin leads to a revision of the mechanism of catalysis. The substrate amide bond becomes activated for hydrolysis by carbonyl-group co-ordination to the especially acidic Zn2+ ion (completely displacing the H2O/OH- species otherwise bound). The imidazole group of enzymic residue His-231, also discerned in the pH profile for kcat/Km from its pKa of 8, provides general-base assistance for hydration of the activated scissile linkage in the first committed step of catalysis. Additional evidence from inhibition patterns shows how substrate-binding energy may be employed in this scheme to promote hydrolysis of peptides by thermolysin.
Competitive inhibition constants Ki for a series of phenol-ring-substituted derivatives of alpha-(2-hydroxyphenyl)benzenepropanoic acid have been ascertained by observing their influence on the catalytic hydrolysis of a peptide substrate by the zinc enzyme carboxypeptidase A. The pH-dependence of Ki shows that binding is maximal between two pKa values: one is that of the phenol group of the inhibitor, and the other uniformly has a value of 6, the pKa of a Zn(2+)-bound water molecule on the enzyme in the absence of substrate or inhibitor. This is the dependence expected if phenolate binds to the Zn2+ displacing its bound H2O/HO-. A log-log plot of the dissociation constants for the productive forms of inhibitor plus enzyme versus the acid dissociation constants of the phenolic residues in the inhibitors yields a straight line with a slope of +0.76. This number indicates that the active-site metal ion has special capacity for dispersing negative charge, such as builds up on the oxygen atom of a carboxamide group undergoing nucleophilic addition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.