The promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells. The current review has analyed the available information on the anticancer activity of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric analysis revealed many of the properties available for the fungi to be the best candidate as a source of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi are Aspergillus niger, A. fumigatus A. oryzae, A. flavus, A. versicolor, A. terreus, Penicillium citrinum, P. chrysogenum, and P. polonicum and have been used for investigating the anticancer activity against the uterine cervix, pancreatic cancer, ovary, breast, colon, and colorectal cancer.
The presence of SARS-CoV-2 in sewage and water resources has been used as an indication for the possible occurrence of the virus among communities and for its potential of transmission among humans through the surrounding environment or water resources. In order to reduce the transmission of SARS-CoV-2, contaminated surfaces should be disinfected frequently by using an effective disinfectant. The present review discusses a bibliometric analysis of the global SARS-CoV-2 research and focuses mainly on reviewing the efficiency of the most traditional disinfection technologies. The disinfection methods reviewed include those for hospitals’ or medical facilities’ wastewater, contaminated surfaces, and contaminated masks. The elimination of the virus based on the concept of sterility assurance level (SAL) is also discussed. In addition, the chemical disinfectants that are currently used, as well as their temporary efficiency, are also reviewed. The different technologies that are globally used for disinfection processes during the COVID-19 pandemic are shown. However, more advanced technologies, such as nanotechnology, might have more potential for higher inactivation effectiveness against SARS-CoV-2.
Azo dyes including C. I. Basic Brown 16 (BB16) are one of the coloured organic compounds that have adverse effects on human health and the environment. The current work aims to optimise the adsorption of C.I BB16 in aqueous solution using durian (Durio zibethinus murray) shell as a low-cost green adsorbent. Durian shell was characterised by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The adsorption process was optimised with response surface methodology (RSM) based on pH (4–8), time (30–240 min), durian shell dosage (0.1–1.0 g/L) and initial concentration of C.I BB16 (10–20 ppm). The removal efficiency was determined based on the reduction of chemical oxygen demand (COD) and the decolourisation of C.I BB16. The techno-economic analysis was described in the current work to know the economic feasibility of durian shells as an adsorbent. The SEM images showed that durian shell adsorbent has a smooth surface with no pores. FTIR spectra confirmed the presence of -C-O, =C–H, C=C, -C-O-C and O-H bonds in durian shell. Maximum decolourisation (77.6%) and COD removal (80.6%) for C.I BB16 was achieved with the interaction between pH, time and adsorbent dose and initial concentration of C.I BB16. The optimal operating factors for adsorption of C.I BB16 recorded at pH 8, time (30 min), durian shell dosage (1 g/L) and 15 mg /L of C.I BB16 concentrations were 77.61 vs. 74.26 (%) of C.I BB16 removal and 80.60 vs. 78.72 (%) of COD removal with an R2 coefficient of 0.94 at p < 0.05. The specific cost of durian shell coagulant production is USD 172.71 per ton which is lower than the market price of honeydew peels-activated carbon (HDP-AC) (USD 261.81) and the commercial market price of activated carbon which is USD 1000.00/tons. These findings indicated that the durian adsorbent provides alternative methods for treating hair dye wastewater. These findings indicated that durian shells have a high potential for the adsorption of C.I BB16 in aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.