OSH plays a significant role in construction project success. Therefore, the aim of this study is to explore the influence of total quality management (TQM) application in improving occupational safety and health (OSH) within the context of Saudi construction companies. Factors were identified from structured literature reviews of previous relevant empirical studies. Then, these factors were theoretically framed into the concept of a triple bottom line (TBL), which includes three main dimensions: social, environmental, and economic. Thus, a semistructured interview survey was used to investigate these factors to address the performance of OSH in construction companies that implement TQM. A grounded theory was used to analyze and determine these factors. Accordingly, fourteen effective factors are identified. The survey findings indicate that the most influenced factors are the control of occupational accidents/injuries, the enhancement of workforce safety, the improvement of management pledges toward OSH, and the development of work culture toward OSH. These findings are vital in exploring the influence of TQM application in Saudi construction companies for the management of improving the performance of OSH, thereby helping to reduce the level of work injuries in the construction field and boosting the safety and health of workers for construction projects.
Over 50% of the total energy consumed by buildings in a hot and dry climate goes toward the cooling regime during the harsh months. Non-residential buildings, especially houses of worship, need a tremendous amount of energy to create a comfortable environment for worshipers. Today, mosques are regarded as energy-hungry buildings, whereas in the past, they were designed according to sustainable vernacular architecture. This study was aimed at improving the energy performance of mosques in a hot and dry climate using bioclimatic principles and architectural elements. To achieve this aim, a process-based simulation approach was applied together with a generate and test technique on 86 scenarios based on 10 architectural elements, with various arithmetic transition rates organized in 9 successive steps. Starting from a simplified hypothetical model, the final model of the mosque design was arrived at based on a holistic bioclimatic vision using 10 architectural elements. The findings of this research were limited to a specific mosque size in a hot and dry climate, but the proposed holistic bioclimatic concept can be developed to take into account all mosque models in several harsh environments.
The computational fluid dynamics (CFDs) models based on the steady Reynolds-averaged Navier–Stokes equations (RANSs) using the k−ω two-equation turbulence model are considered in order to estimate the wind flow distribution around buildings. The present investigation developed a micro-scale city model with building details for the Hail area (Saudi Arabia) using ANSYS FLUENT software. Based on data from the region’s meteorological stations, the effect of wind speed (from 2 to 8 m/s) and wind direction (north, east, west, and south) was simulated. This study allows us to identify areas without wind comfort such as the corner of the building and the zones between adjacent buildings, which make this zone not recommended for placement of restaurants, pedestrian passages, or gardens. Particular attention was also paid to the highest building (Hail Tower, 67 m) in order to estimate, along the tower height, the wind speed effect on the turbulence intensity, the turbulent kinetic energy (TKE), the friction coefficient, and the dynamic pressure.
Over the past few years, electricity demand has been on the rise. This has resulted in renewable energy resources being used rapidly, considering the shortage as well as the environmental impacts of fossil fuel. A renewable energy source that has become increasingly popular is photovoltaic (PV) energy as it is environmentally friendly. Installing PV modules, however, has to ensure harsh environments including temperature, dust, birds drop, hotspot, and storm. Thus, the phenomena of the non-uniform aging of PV modules has become unavoidable, negatively affecting the performance of PV plants, particularly during the middle and latter duration of their service life. The idea here is to decrease the capital of maintenance and operation costs involved in medium- and large-scale PV power plants and improving the power efficiency. Hence, the present paper generated an offline PV module reconfiguration strategy considering the non-uniform aging PV array to ensure that this effect is mitigated and does not need extra sensors. To enhance the economic benefit, the offline reconfiguration takes into account labor cost and electricity price. This paper proposes a gene evolution algorithm (GEA) for determining the highest economic benefit. The proposed algorithm was verified using MATLAB software-based modeling and simulations to investigate fourteen countries to maximize the economic benefit that employed a representative 18-kW and 43-kW output and the power of 10 × 10 PV arrays in connection as a testing benchmark and considered the electricity price and workforce cost. According to the results, enhanced power output can be generated from a non-uniformly aged PV array of any size, and offers the minimum swapping/replacing times to maximize the output power and improve the electric revenue by reducing the maintenance costs.
Due to urbanization, population growth, and the consequences of climate change, the usage of energy for cooling has increased considerably in recent years. Passive climate measures, on the other hand, could alleviate the situation by reducing energy use in buildings. This study examined the environmental and financial benefits of utilizing glass fiber-reinforced cement in the external walls of a communal social hub building in New Aswan city, taken an example of the hot desert region. Utilizing Design Builder software, the effect of various outside wall alternatives on cooling energy consumption was explored and analyzed. In addition, a cost–benefit analysis utilizing the simple payback period was conducted to aid decision-makers in selecting the most suitable exterior wall materials for public buildings in hot desert regions. Using cement plaster, cement brick, glass wool, and glass fiber-reinforced cement as an outside wall resulted in a significant improvement rate, according to the data. Compared to a typical wall (cement plaster, cement brick, and cement plaster), it can save up to 41% of energy. In addition, it has the lowest simple payback period value when compared to other examined solutions (10.86 years). In general, the results indicate that glass fiber-reinforced cement walls embedded in thermal insulation materials and incorporated into cement brick walls are more energy-efficient in terms of necessary cooling energy and economic viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.