The evaluation of the dynamic security of the electrical power system after the occurrence of disturbances in the network is one of the most important tools that the control center uses to maintain the system in a safe operating mode, as well as prevent cases of system out of control and cases of complete shutdown. With the annual increase in the size of the electrical system and its distribution over a very wide geographical area, this led to a new challenge to assess dynamic security assessment (DSA), which is dealing with a huge and varied amount of data that requires processing in a very short time. To address these challenges, this study presented a new technique of artificial intelligence, which is the attribute selection technique, to reduce the size of this data and thus improve the accuracy and speed of results. This method relied on the combination of decision tree (DT) algorithms and a technique attribute selection in the data obtained from the test system IEEE-30Bus Model. The results of this method showed a significant reduction in the number of data used, which amounted to 77.27% of the total data, which led to an improvement in the classification accuracy, as the classification accuracy reached 97.39%. This reduction is very important when dealing in the online operating environment, as it saves the time necessary to reach the most accurate evaluation decision and thus issue gives a greater opportunity to take the appropriate decision in the event of disturbances and keep the power system in a secure case.
Dynamic security is an essential requirement for operating a modern power system. Due to the global increase in load demand, modern power systems witness several dramatic changes in terms of size and implementation of new renewable sources. At the same time, the deregulation process in power operation policy is being pushed to operate closer to its security boundary limits. Based on the combined Decision Tree (DT) algorithm, namely Random Forest (RF) and advance attribute selection technique, this paper presents an approach to address these challenges related to dynamic security assessment (DSA) in the modern power system. The performance of study approach is demonstrated on a modified version of IEEE 9 and 14-bus test system models with presence of two wind turbines (WTs) type WTG 3. Results show the superiority of RF compared to other DT algorithms that are used in this study. In addition, the attribute selection technique could significantly affect the number of attributes required for DSA. This makes DT classifier more effectiveness in the online application. Thus, this approach can provide control center with vital information with high accuracy results and less attributes about security state direction that will help operator to take the right and fast steps to remedy problems and prevent a blackout from occurring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.