Epilepsy is one of the most prevalent neurological disorders with no age, racial, social class, and neither national nor geographic boundaries. There are 50 million sufferers in the world today with 2.4 million new cases occur each year. Electroencephalogram (EEG) has become a traditional procedure to investigate abnormal functioning of brain activity. Epileptic EEG is usually characterized by short transients and sharp waves as spikes. Identification of such event splays a crucial role in epilepsy diagnosis and treatment. The present study proposes a method to detect three epileptic spike types in EEG recordings based mainly on Template Matching Algorithm including multiple signal-processing approaches. The method was applied to real clinical EEG data of epileptic patients and evaluated according to sensitivity, specificity, selectivity and average detection rate. The promising results illuminate that hybrid processing approaches in temporal, frequency and spatial domains can be a real solution to identify fast EEG transients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.