To create a low-cost ventilator that could be constructed with readily-available hospital equipment for use in emergency or low-resource settings. Main methods: The novel ventilator consists of an inspiratory limb composed of an elastic flow-inflating bag encased within a non-compliant outer sheath and an expiratory limb composed of a series of two, one-way bidirectional splitter valves derived from a self-inflating bag system. An Arduino Uno microcontroller controls a solenoid valve that can be programmed to open and close to produce a set respiratory rate and inspiratory time. Using an ASL 5000 Lung Simulator, we obtained flow, pressure, and volume waveforms at different lung compliances. Key findings: At a static lung compliance of 50 mL/cm H 2 O and an airway resistance of 6 cm H 2 O/L/s, ventilated at a PIP and PEEP of 16 and 5 cm H 2 O, respectively, tidal volumes of approximately 540 mL were achieved. At a static lung compliance of 20 mL/cm H 2 O and an airway resistance of 6 cm H 2 O/L/s, ventilated at a PIP and PEEP of 38 and 15 cm H 2 O, respectively, tidal volumes of approximately 495 mL were achieved. Significance: This novel ventilator is able to safely and reliably ventilate patients with a range of pulmonary disease in a simulated setting. Opportunities exist to utilize our ventilator in emergency situations and lowresource settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.