We experimentally characterize the generation of high-power terahertz radiation (THz) at the rear surface of a target irradiated by multiple laser pulses. A detailed dependence of the THz yield as a function of laser pulse duration, energy, target material and thickness is presented. We studied the THz radiation emitted mainly in two directions from the target rear surface, namely target normal (acceptance angle 0.87 sr) and non-collinear direction (perpendicular to the target normal directionacceptance angle 4.12 sr). Independent measurements based on electro-optic diagnostics and pyroelectric detector were employed to estimate the THz yield. Most of the energy is emitted at large angles relative to the target normal direction. THz yield increases with incident laser intensity and thinner targets are better emitters of THz radiation compared to thicker ones.
Ion emission from a nanoplasma produced in the interaction of intense optical laser pulses with argon clusters is studied resolving simultaneously charge states and recoil energies. By applying appropriate static electric fields we observe that a significant fraction of the ions Ar^{q+} (q=1-7) has electrons with binding energies lower than 150 meV; i.e., n_{Ryd}≥15 levels are populated. Charge state changes observed on a μs time scale can be attributed to electron emission due to autoionizing Rydberg states, indicating that high-ℓ Rydberg levels are populated as well. The experiments support theoretical predictions that a significant fraction of delocalized electrons, which are bound with hundreds of eV to the nanoplasma after the laser exposure, fill up meV bound ion states in the adiabatic expansion. We expect the process to be relevant for the long-term evolution of expanding laser-induced dense plasmas in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.