Acoustic emission (AE) signal generated from defects in rolling element bearings are investigated using simulated defects and experimental measurements in this paper. Rolling element bearings are crucial parts of many machines and there has been an increasing demand to find effective and reliable health monitoring technique and advanced signal processing to detect and diagnose the size and location of incipient defects. Condition monitoring of rolling element bearings comprises four main stages, which are, statistical analysis, faults diagnostics, defect size calculation, and prognostics. A modified and effective signal processing algorithm is designed to diagnose localized defects on rolling element bearing components under different operating speeds, loadings, and defect sizes. The algorithm is based on optimizing the ratio of Kurtosis and Shannon entropy to obtain the optimal band pass filter utilizing wavelet packet transform (WPT) and envelope detection. Results show the superiority of the developed algorithm and its effectiveness in extracting bearing characteristic frequencies from the raw acoustic emission signals masked by the background noise under different operating conditions.
Acoustic emission (AE) signal generated from artificial defects in rolling element bearings are investigated using experimental measurements in this paper. Rolling element bearings are crucial parts of many machines and there has been an increasing demand to find effective and reliable health monitoring technique and advanced signal processing to detect and diagnose the size and location of incipient defects. Condition monitoring of rolling element bearings, comprises four main stages which are, statistical analysis, faults diagnostics, defect size calculation, and prognostics. In this paper, the effect of defect size, operating speed, and loading conditions on statistical parameters of AE signals, using design of experiment method, have been investigated to select the most sensitive parameters for diagnosing incipient faults and defect growth on rolling element bearings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.