Human inborn errors of immunity mediated by the cytokines interleukin (IL)-17A/F underlie mucocutaneous candidiasis, whereas inborn errors of interferon (IFN)-γ immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORγ and RORγT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORγ- and RORγT-deficient individuals also displayed an impaired IFN-γ response to Mycobacterium. This principally reflected profoundly defective IFN-γ production by circulating γδ T cells and CD4+CCR6+ CXCR3+ αβ T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORγ, or RORγT, or both.
BackgroundPyrethroid resistance is a threat to effective vector control of Aedes aegypti, the vector of dengue, Zika and other arboviruses, but there are many major knowledge gaps on the mechanisms of resistance. In Jeddah and Makkah, the principal dengue-endemic areas of Saudi Arabia, pyrethroids are used widely for Ae. aegypti control but information about resistance remains sparse, and the underlying genetic basis is unknown. Findings from an ongoing study in this internationally significant area are reported here.Methods Aedes aegypti collected from each city were raised to adults and assayed for resistance to permethrin, deltamethrin (with and without the synergist piperonyl butoxide, PBO), fenitrothion, and bendiocarb. Two fragments of the voltage-gated sodium channel (Vgsc), encompassing four previously identified mutation sites, were sequenced and subsequently genotyped to determine associations with resistance. Expression of five candidate genes (CYP9J10, CYP9J28, CYP9J32, CYP9M6, ABCB4) previously associated with pyrethroid resistance was compared between assay survivors and controls.ResultsJeddah and Makkah populations exhibited resistance to multiple insecticides and a similarly high prevalence of resistance to deltamethrin compared to a resistant Cayman strain, with a significant influence of age and exposure duration on survival. PBO pre-exposure increased pyrethroid mortality significantly in the Jeddah, but not the Makkah strain. Three potentially interacting Vgsc mutations were detected: V1016G and S989P were in perfect linkage disequilibrium in each strain and strongly predicted survival, especially in the Makkah strain, but were in negative linkage disequilibrium with 1534C, though some females with the Vgsc triple mutation were detected. The candidate gene CYP9J28 was significantly over-expressed in Jeddah compared to two susceptible reference strains, but none of the candidate genes was consistently up-regulated to a significant level in the Makkah strain.ConclusionsDespite their proximity, Makkah and Jeddah exhibit significant differences in pyrethroid resistance phenotypes, with some evidence to suggest a different balance of mechanisms, for example with more impact associated with CYP450s in the Jeddah strain, and the dual kdr mutations 989P and 1016G in the more resistant Makkah strain. The results overall demonstrate a major role for paired target site mutations in pyrethroid resistance and highlight their utility for diagnostic monitoring.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-017-2096-6) contains supplementary material, which is available to authorized users.
The article highlights the experience of the NBS Program in Saudi Arabia and providing data on specific regional incidences of all the screened disorders included in the programme; and showed that the incidence of these disorders is one of the highest reported so far world-wide.
Supplemental digital content is available in the text.
BackgroundThe draft Global Technical Strategy for malaria aims to eliminate malaria from at least 10 countries by 2020. Yemen and Saudi Arabia remain the last two countries on the Arabian Peninsula yet to achieve elimination. Over the last 50 years, systematic efforts to control malaria in the Kingdom of Saudi Arabia has successfully reduced malaria cases to a point where malaria is now constrained largely to Jazan Province, the most south-western area along the Red Sea. The progress toward elimination in this province is reviewed between 2000 and 2014.MethodsData were obtained from the Ministry of Health case-reporting systems, activity reports, unpublished consultants reports, and relevant scientific published papers. Sub-provincial population data were obtained the national household censuses undertaken in 2004 and 2010. Rainfall data were obtained from the Meteorological Department in Jazan.ResultsBetween 2000 and 2014 there were 5522 locally acquired cases of malaria and 9936 cases of imported malaria. A significant reduction in locally acquired malaria cases was observed from 2000 to 2014, resulting in an average annual incidence (2010–2014) of 0.3 cases per 10,000 population. Conversely imported cases, since 2000, remain consistent and higher than locally acquired cases, averaging between 250 and 830 cases per year. The incidence of locally acquired cases is heterogeneous across the Province, with only a few health districts contributing the majority of the cases. The overall decline in malaria case incidence can be attributed to coincidental expansion of control efforts and periods of exceptionally low rainfall.ConclusionsJazan province is poised to achieve malaria elimination. There is a need to change from a policy of passive case detection to reactively and proactively detecting infectious reservoirs that require new approaches to surveillance. These should be combined with advanced epidemiological tools to improve the definitions of epidemiological receptive and hotspot malaria risk mapping. The single largest threat currently remains the risks posed by imported infections from Yemen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.