This work aimed to establish a simple method to produce additive-free triamcinolone acetonide (TAA) microspheres suitable for pulmonary delivery, and therefore more simple manufacturing steps will be warranted. The spray-drying process involved the optimization of the TAA feed ratio in a concentration range of 1–3% w/v from different ethanol/water compositions with/without adding ammonium bicarbonate as a blowing agent. Characterization of the formulas was performed via scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction. Our results indicated that the size and morphology of spray-dried TAA particles were dependent on the feed and solvent concentrations in the spray-dried formulations. Furthermore, adding the blowing agent, ammonium bicarbonate, did not produce a significant enhancement in particle characteristics. We prepared additive-free TAA microspheres and found that TAA formulation #1 had optimal physical properties in terms of diameter (2.24 ± 0.27 µm), bulk density (0.95 ± 0.05), tapped density (1.18 ± 0.07), and flowability for deposition during the pulmonary tract, from a centric airway to the alveoli as indicated by Carr’s index = 19 ± 0.01. Hence, formulation #1 was selected to be tested for pharmacokinetic characters. Rats received pulmonary doses of TAA formula #1 and then the TTA concentration in plasma, fluid broncho-alveolar lavage, and lung tissues was determined by HPLC. The TAA concentration at 15 min was 0.55 ± 0.02 µg/mL in plasma, 16.74 ± 2 µg/mL in bronchoalveolar lavage, and 8.96 ± 0.65 µg/mL in lung homogenates, while at the 24 h time point, the TAA concentration was 0.03 ± 0.02 µg/mL in plasma, 1.48 ± 0.27 µg/mL in bronchoalveolar lavage, and 3.79 ± 0.33 µg/mL in lung homogenates. We found that TAA remained in curative concentrations in the rat lung tissues for at least 24 h after pulmonary administration. Therefore, we can conclude that additive-free spray-dried TAA microspheres were promising for treating lung diseases. The current novel preparation technology has applications in the design of preparations for TAA or other therapeutic agents designed for pulmonary delivery.
This study demonstrates high drug-loading of novel pyridine derivatives (S1–S4) in lipid- and polymer-based core–shell nanocapsules (LPNCs) for boosting the anticancer efficiency and alleviating toxicity of these novel pyridine derivatives. The nanocapsules were fabricated using a nanoprecipitation technique and characterized for particle size, surface morphology, and entrapment efficiency. The prepared nanocapsules exhibited a particle size ranging from 185.0 ± 17.4 to 223.0 ± 15.3 nm and a drug entrapment of >90%. The microscopic evaluation demonstrated spherical-shaped nanocapsules with distinct core–shell structures. The in vitro release study depicted a biphasic and sustained release pattern of test compounds from the nanocapsules. In addition, it was obvious from the cytotoxicity studies that the nanocapsules showed superior cytotoxicity against both MCF-7 and A549 cancer cell lines, as manifested by a significant decrease in the IC50 value compared to free test compounds. The in vivo antitumor efficacy of the optimized nanocapsule formulation (S4-loaded LPNCs) was investigated in an Ehrlich ascites carcinoma (EAC) solid tumor-bearing mice model. Interestingly, the entrapment of the test compound (S4) within LPNCs remarkably triggered superior tumor growth inhibition when compared with either free S4 or the standard anticancer drug 5-fluorouracil. Such enhanced in vivo antitumor activity was accompanied by a remarkable increase in animal life span. Furthermore, the S4-loaded LPNC formulation was tolerated well by treated animals, as evidenced by the absence of any signs of acute toxicity or alterations in biochemical markers of liver and kidney functions. Collectively, our findings clearly underscore the therapeutic potential of S4-loaded LPNCs over free S4 in conquering EAC solid tumors, presumably via granting efficient delivery of adequate concentrations of the entrapped drug to the target site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.