We examined the effect of interleukin (IL)-9, a cytokine active on B and T lymphocytes and associated with bronchial asthma, on the development of lung fibrosis induced by crystalline silica particles. Therefore, we compared the response to silica (1 and 5 mg/animal, intratracheally) in transgenic mice that constitutively express high levels of IL-9 (Tg5) and their wild-type counterparts (FVB). At 2 and 4 mo after treatment with silica, histologic examination and measurement of lung hydroxyproline content showed that the severity of fibrosis was significantly less important in Tg5 mice than in their wild-type counterparts. Intraperitoneal injection of IL-9 in C57BL/6 mice also reduced the amplitude of silica-induced lung fibrosis. The reduction of lung fibrosis by IL-9 was associated with a significant expansion of the B-lymphocyte population, both in bronchoalveolar lavage (BAL) and in the pulmonary parenchyma. In wild-type animals, silica-induced fibrosis correlated with markers of a T helper 2-like response such as upregulation of IL-4 levels in lung tissue and an increased immunoglobulin (Ig) G1/IgG2a ratio in BAL. Immunohistochemical studies demonstrated that the upregulation of IL-4 associated with the development of fibrosis was mainly localized in inflammatory alveolar macrophages. In transgenic mice, the level of IL-4 in lung homogenates was not significantly affected by silica treatment, and a reduced IgG1/IgG2a ratio was observed upon treatment with silica. The levels of interferon-gamma were significantly decreased after silica treatment in both strains. Together, these observations point to an antifibrotic effect of IL-9 in pulmonary fibrosis associated with a limitation of the type 2 polarization which accompanies lung fibrosis.
Background: It has been generally well accepted that chronic inflammation is a necessary component of lung fibrosis but this concept has recently been challenged.
The p40 subunit of IL-12 (IL-12p40), but not the heterodimeric form IL-12p70, is secreted during the development of silica-induced lung fibrosis in C57BL/6 mice. To delineate the contribution of IL-12p40 to the lung inflammatory and fibrotic processes, we compared the pulmonary responses with silica particles of IL-12p35-deficient mice (IL-12p35−/−, able to produce IL-12p40) and IL-12p40-deficient mice (IL-12p40−/−). IL-12p35−/− and IL-12p40−/− animals developed strikingly contrasting responses to silica in comparison with wild-type C57BL/6 mice. Although the IL-12p40−/− mice exhibited limited inflammatory and fibrotic reactions, the IL-12p35−/− mice presented a robust and well-developed pulmonary inflammation and fibrosis. Furthermore, the silica-induced increase in lung IL-12p40 content was significantly higher in IL-12p35−/− mice than in wild-type controls, and was associated with extensive lung fibrosis and pulmonary macrophage infiltration. The contrasting responses observed between these two IL-12 subunit-deficient murine strains were not accompanied by a strict type 1 or type 2 polarization as estimated by the measurements of lung IFN-γ/IgG2a and IL-4/IgG1 content. In vitro proliferation, type I collagen expression, as well as myofibroblast differentiation of purified pulmonary fibroblasts were not affected by treatment with exogenous rIL-12p40. In vivo, supplementation with rIL-12p40 restored the impaired pulmonary fibrotic response and macrophage accumulation in silica-treated IL-12p40−/− mice, and also promoted fibrosis and macrophage influx in wild-type mice. Together, our data suggest that IL-12p40 plays an important role in silica-induced pulmonary inflammation and fibrosis, possibly by exacerbating macrophage recruitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.