Background: Fusarium species is one of the most devastating fungi responsible for fruit and vegetable crops rot worldwide. The present study was designed to find an ecofriendly control measure for pathogenic Fusarium species, using suitable bioagents. Methods: Medicinal plant extracts were evaluated or their antifungal activities against Fusarium species using the poisoned food method. Antagonistic potency of some nonpathogenic microbes was also assessed on Fusarium species using the dual culture method. Results: Highest inhibition of growth of Fusarium sp. was observed with 68.1% (0.389 mg per 90 mm Petri plate) of mycelia on Coccinia grandis plant leaf extract, in comparison to the control grown with 100.0% (1.22 mg/dish). The highest inhibition of radial growth was observed using Trichoderma viride on Fusarium sp. (46.01% inhibition). Conclusions: The findings of present study would be benevolent for antifungal drug development to control Fusarium sp. causing fruit and vegetable rot.
Background: The present study was designed to isolate and identify the phyto-pathogen responsible for black rot of Citrus sinensis, and to determine its biological control measures. Methods: The pathogen was isolated from infected oranges and cultured on Luria-Bertani medium. Gram staining method was used to identify the morphological characteristics of the causal agents of the black rot. Advanced molecular technique was applied to facilitate proper detection of the isolated bacteria. Phylogenetic trees were analyzed using the Neighbor-Joining method. Antimicrobial screening was conducted by disc diffusion method. Antagonistic activity was evaluated by well diffusion method. Results: Gram staining of the causal agent showed rod shaped, small and pink bacteria. Polymerase chain reaction of the 16S ribosomal RNA gene amplified an approximately 1465 bp product. The nucleotide sequences of the isolated bacterial sample 1 (BS1) and bacterial sample 2 (BS2) had 99.34% and 99.45% similarities with the reference of Serratia marcescens sequence in NCBI GenBank. The obtained sequences were deposited in GenBank. Two isolates showed virulence capability on some fresh fruits, which confirmed the stain detection and Koch’s postulates. Allium sativum extract showed the largest (27.33±1.5 mm) diameter of zone of inhibition against BS1, at 30µg/disc concentration. In the antagonistic assay, Rhizobium leguminosarum showed largest (19±1 mm) zone of inhibition against BS1. Conclusions: Findings of the current investigations are constructive for identification of causative pathogens in Citrus sinensis black rot disease and their biological control measures.
Background: The present study was designed to isolate and identify the phyto-pathogen responsible for black rot of Citrus sinensis, and to determine its biological control measures. Methods: The pathogen was isolated from infected oranges and cultured on Luria-Bertani medium. Gram staining method was used to identify the morphological characteristics of the causal agents of the black rot. Advanced molecular technique was applied to facilitate proper detection of the isolated bacteria. Phylogenetic trees were analyzed using the Neighbor-Joining method. Antimicrobial screening was conducted by disc diffusion method. Antagonistic activity was evaluated by well diffusion method. Results: Gram staining of the causal agent showed rod shaped, small and pink bacteria. Polymerase chain reaction of the 16S ribosomal RNA gene amplified an approximately 1465 bp product. The nucleotide sequences of the isolated bacterial sample 1 (BS1) and bacterial sample 2 (BS2) had 99.34% and 99.45% similarities with the reference of Serratia marcescens sequence in NCBI GenBank. The obtained sequences were deposited in GenBank. Two isolates showed virulence capability on some fresh fruits, which confirmed the stain detection and Koch’s postulates. Allium sativum extract showed the largest (27.33±1.5 mm) diameter of zone of inhibition against BS1, at 30µg/disc concentration. In the antagonistic assay, Rhizobium leguminosarum showed largest (19±1 mm) zone of inhibition against BS1. Conclusions: Findings of the current investigations are constructive for identification of causative pathogens in Citrus sinensis black rot disease and their biological control measures.
Background: Fusarium rot is a newly introduced, devastating disease of citrus fruits. The current investigation was undertaken to characterize the microbes responsible for fruit rot in Citrus reticulata. Methods: Pathogens were isolated from infected citrus fruits using morphological and molecular approaches. For confirmation of the isolated fungi, polymerase chain reaction (PCR) amplification and internal transcribed spacer gene sequencing techniques were used. Results: The isolated fungus was grown on potato dextrose agar for three days and it produced clamydospores, hyphae and macroconidia. PCR amplification of isolated fungal DNA gave a 650 bp product. The sequence obtained from isolated fungi had 99.42% similarity with the reference Fusarium concentricum sequence in NCBI GenBank. The obtained sequence was deposited in GenBank (Accession No. MT856371). Two isolates showed virulence capability on fresh guava, sweet orange and tomato fruits, which confirmed species identification and Koch’s postulates. Artificially inoculated fungal species grown on tested fruits showed typical Fusarium species symptoms. Conclusions: Outcomes of the present study are beneficial for the detection of this detrimental disease in postharvest Citrus reticulata fruits. Further research is needed for the control of this economically important disease. This is the first study of fruit rot in Citrus reticulata caused by Fusarium in Bangladesh.
Background: Fusarium rot is a newly introduced, devastating disease of citrus fruits. The current investigation was undertaken to characterize the microbes responsible for fruit rot in Citrus reticulata. Methods: Pathogens were isolated from infected citrus fruits using morphological and molecular approaches. For confirmation of the isolated fungi, polymerase chain reaction (PCR) amplification and internal transcribed spacer gene sequencing techniques were used. Results: The isolated fungus was grown on potato dextrose agar for three days and it produced clamydospores, hyphae and macroconidia. PCR amplification of isolated fungal DNA gave a 650 bp product. The sequence obtained from isolated fungi had 99.42% similarity with the reference Fusarium concentricum sequence in NCBI GenBank. The obtained sequence was deposited in GenBank (Accession No. MT856371). Two isolates showed virulence capability on fresh guava, sweet orange and tomato fruits, which confirmed species identification and Koch’s postulates. Artificially inoculated fungal species grown on tested fruits showed typical Fusarium species symptoms. Conclusions: Outcomes of the present study are beneficial for the detection of this detrimental disease in postharvest Citrus reticulata fruits. Further research is needed for the control of this economically important disease. This is the first study of fruit rot in Citrus reticulata caused by Fusarium in Bangladesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.