Nanopillars fabricated in diamond or silicon-carbide (SiC) have been used to enhance the light harvesting or absorption or to increase the collection efficiency of embedded single photon emission in the visible or near infrared for their detection using confocal microscopy. While electric and magnetic dipolar resonances in SiC have been studied in the far-infrared, they have not been studied in the near infrared. Here we show for the first time that electromagnetic Mie-scattering moments within SiC metasurfaces can control the spontaneous emission process of point defects in the near infrared. Using SiC nanopillars based metasurfaces, we theoretically demonstrate a control over the spontaneous emission rate of embedded color-centers by using the coherent superposition of the electric dipolar and magnetic quadrupolar electromagnetic Mie-scattering moments of the structure. More than an order of magnitude emission/decay rate enhancement is obtained with the maximum enhancement close to 30. We also demonstrate that the relative phase of the Mie-scattering moments helps in controlling the emission directionality. SiC metasurfaces in the spectral range of color centres, from the visible to the near infrared, can be used to control the confinement and directionality of their spontaneous emission, increasing the opportunities to study light-matter interaction and to advance quantum photonic and quantum sensing device integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.