We propose a new speech enhancement method based on time and scale adaptation of wavelet thresholds. The time dependency is introduced by approximating the Teager Energy of the wavelet coefficients, while the scale dependency is introduced by extending the principle of level dependent threshold to Wavelet Packet Thresholding.This technique does not require an explicit estimation of the noise level or of the apriori knowledge of the SNR, as is usually needed in most of the popular enhancement methods. Performance of the proposed method is evaluated on speech recorded in real conditions (plane, sawmill, tank, subway, babble, car, exhibition hall, restaurant, street, airport, and train station) and artificially added noise. MELscale decomposition based on wavelet packets is also compared to the common wavelet packet scale.Comparison in terms of Signal-to-Noise Ratio (SNR) is reported for time adaptation and time-scale adaptation thresholding of the wavelet coefficients thresholding. Visual inspection of spectrograms and listening experiments are also used to support the results. Hidden Markov Models Speech recognition experiments are conducted on the AURORA-2 database and show that the proposed method improves the speech recognition rates for low SNRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.