Biometric applications widely use the face as a component for recognition and automatic detection. Face rotation is a variable component and makes face detection a complex and challenging task with varied angles and rotation. This problem has been investigated, and a novice algorithm, namely RIFDS (Rotation Invariant Face Detection System), has been devised. The objective of the paper is to implement a robust method for face detection taken at various angle. Further to achieve better results than known algorithms for face detection. In RIFDS Polar Harmonic Transforms (PHT) technique is combined with Multi-Block Local Binary Pattern (MBLBP) in a hybrid manner. The MBLBP is used to extract texture patterns from the digital image, and the PHT is used to manage invariant rotation characteristics. In this manner, RIFDS can detect human faces at different rotations and with different facial expressions. The RIFDS performance is validated on different face databases like LFW, ORL, CMU, MIT-CBCL, JAFFF Face Databases, and Lena images. The results show that the RIFDS algorithm can detect faces at varying angles and at different image resolutions and with an accuracy of 99.9%. The RIFDS algorithm outperforms previous methods like Viola-Jones, Multi-block Local Binary Pattern (MBLBP), and Polar Harmonic Transforms (PHTs). The RIFDS approach has a further scope with a genetic algorithm to detect faces (approximation) even from shadows.
This research work considers the utilize of energy harvesters, instead of conventional time-invariant energy sources, in wireless communication. For the purpose of exposition, we study the traditional two-hop communication system for delay limited (DL) and delay tolerant (DT) relaying networks over fading channels, in which the source node transmits with power drawn from energy harvesting (EH) sources and the relay transmits with conventional non-EH sources. We address the throughput maximization problem for the proposed system model for DL and DT cases. We find that the optimal power allocation algorithm for the single-hop communication system with EH constraints, namely, recursive geometric water-filling (RGWF), can be utilized as a guideline for the design of the two-hop system. We first introduce RGWF algorithm and we show the advantages of the geometric approach in eliminating the complexity of the Karush-Kuhn-Tucker (KKT) condition as well as providing a closed-form and exact solutions to the proposed problem. Based on the RGWF algorithm, we propose offline joint power allocation and transmission time scheduling schemes for DL relaying network and DT relaying network. We also propose efficient online resource allocation schemes for both relays' cases. The performance of the proposed schemes is evaluated via simulation and the results demonstrate that a network with delay tolerant ability provides better performance in term of throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.