Motivated by the Hilfer fractional derivative (which interpolates the Riemann-Liouville derivative and the Caputo derivative), we consider a new type of fractional derivative (which interpolates the Hadamard derivative and its Caputo counterpart). We prove the well-posedness for a basic Cauchy type fractional differential equation involving this kind of derivative. This is established in an appropriate underlying space after proving the equivalence of this problem with a certain corresponding Volterra integral equation.
In this paper, we are concerned with a fractional differential inequality containing a lower order fractional derivative and a polynomial source term in the right hand side. A non-existence of non-trivial global solutions result is proved in an appropriate space by means of the test-function method. The range of blow up is found to depend only on the lower order derivative. This is in line with the well-known fact for an internally weakly damped wave equation that solutions will converge to solutions of the parabolic part.ACTA MATHEMATICA SCIENTIA Vol.37 Ser.Bf (t, y (t)) ≥ t γ |y (t)| m for some m > 1 and γ ∈ R. That is we consider the problem:
Abstract. It is known that, under certain conditions, solutions of some ordinary differential equations of first, second or even higher order are asymptotic to polynomials as time goes to infinity. We generalize and extend some of the existing results to differential equations of non-integer order. Reasonable conditions and appropriate underlying spaces are determined ensuring that solutions of fractional differential equations with nonlinear right hand sides approach power type functions as time goes to infinity. The case of fractional differential problems with fractional damping is also considered. Our results are obtained by using generalized versions of GronwallBellman inequality and appropriate desingularization techniques.Keywords: asymptotic behavior, fractional differential equation, Riemann-Liouville fractional integral and fractional derivative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.