In this paper, we investigate the resource management problem in orthogonal frequency division multiplexing (OFDM) based multiple-input multiple-output (MIMO) cognitive radio (CR) systems. We propose to perform resource allocation based on interference alignment (IA) in order to improve the spectral efficiency of CR systems without affecting the quality of service of the primary system. IA plays a role in the proposed algorithm to enable the secondary users (SUs) to cooperate and share the available spectrum, which leads to a considerable increase in the spectral efficiency of CR systems. However, IA based spectrum sharing is restricted to a certain number of SUs per subcarrier in order to satisfy the IA feasibility conditions. Accordingly, the resource allocation problem is formulated as a mixed-integer optimization problem which is considered as an N P-hard problem. To reduce the computational complexity of the problem, a two-phases efficient sub-optimal algorithm is proposed. In the first phase, frequency-clustering is performed in order to satisfy the IA feasibility conditions, where each subcarrier is assigned to a feasible number of SUs. Whenever possible, frequency-clustering stage considers the fairness among the SUs. In the second stage, the available power is allocated among the subcarriers and SUs without violating the constraints that limit the maximum interference induced to the primary system. Simulation results show that IA with frequency-clustering achieves a significant sum rate increase compared to CR systems with orthogonal multiple access transmission techniques.
This letter presents the integration of frequency selective surfaces (FSSs) with retroreflectors for the realization of chipless wireless indoor localization tag landmarks. As an example, the high radar cross section (RCS) of a trihedral corner reflector is signed with an FSS-based stopband filter, so that the backscattered power from several corner reflectors can be distinguished by a mobile reader according to the frequency response of the FSS. Measurement results with a 3 × 3 × 3 cm 3 trihedral corner reflector and a stopband FSS in a Rogers RT/Duroid 5880 high-frequency laminate at 90 GHz shows an RCS above −25 dBsqm for 90°c overage in the TM plane. Due to the high RCS, measurements at distances up to 4 m with a standard 25 dBi gain horn antenna and a vector network analyzer as a reader are shown. These preliminary results show the potential of the concept for applications such as indoor localization with sub-mm accuracy, where high bandwidths, but only a low number of bits, are needed for the identification of the tag landmarks.
The paper describes the development of passive, chipless tags for a novel indoor self-localization system operating at high mm-wave frequencies. One tag concept is based on the low-Q fundamental mode of dielectric resonators (DR) which exhibits peak scattering at its resonance frequency. As the radar cross-section (RCS) of DRs at mm-wave frequencies is far too low for the intended application, arrays of DRs and combinations with dielectric lens and corner reflectors are investigated to boost the RCS while keeping the scattering retro-directive over wide-angle incidence. Satisfactory results are demonstrated experimentally in Wband with metal corner reflectors combined with planar arrays of DRs; the tags produce a high RCS level over a moderately broad angular range and a wide frequency range where they exhibit a notch at the resonance frequency of the dielectric resonators. These designs suffer from low coding range of 3 to 6 bit, degradations of RCS in angular range, and a difficult separation of the tag response from strong clutter. Both the suppression of large clutter interference by using time gating of the tag response and a larger coding range are promised by a chipless tag concept based on multiple high-Q resonators in photonic crystal (PhC) technology. Experimental samples are characterized as transmission resonators and as retro-directive tags at the 230 GHz band. As a concept to boost the retro-directive RCS with a truly wide-angle response, the integration of PhC resonators with a Luneburg lens is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.