Abstact:The aim of this paper is to present an overview of the recent achievements of our group in the fabrication and optical characterizations of As 2 S 3 microstructured optical fibers (MOFs). Firstly, we study the synthesis of high purity arsenic sulfide glasses. Then we describe the use of a versatile process using mechanical drilling for the preparation of preforms and then the drawing of MOFs including suspended core fibers. Low losses MOFs are obtained by this way, with background level of losses reaching less than 0.5 dB/m. Optical characterizations of these fibers are then reported, especially dispersion measurements. The feasibility of all-optical regeneration based on a Mamyshev regenerator is investigated, and the generation of a broadband spectrum between 1 µm and 2.6 µm by femto second pumping around 1.5 µm is presented.
We report the first demonstration of a Raman fiber laser (RFL) emitting in the mid-infrared, above 3 μm. The operation of a single-mode As2S3 chalcogenide glass based RFL at 3.34 μm is demonstrated by using a low-loss Fabry-Pérot cavity formed by a pair of fiber Bragg gratings. A specially designed quasi-cw erbium-doped fluoride fiber laser emitting at 3.005 μm is used to pump the RFL. A laser output peak power of 0.6 W is obtained with a lasing efficiency of 39% with respect to the launched pump power.
Laser emission is demonstrated at a wavelength of 3.766 μm in a cascaded Raman gain device. The laser cavity is made of two nested pairs of fiber Bragg gratings inscribed in a 2.8 m length of low-loss As2S3 fiber. An erbium-doped fluoride glass quasi-CW fiber laser emitting at 3.005 μm is used to pump the cascaded Raman cavity, which converts the pump wavelength successively to the first and second Stokes orders, respectively at 3.340 and 3.766 μm. A laser output peak power in excess of 100 mW is obtained with a lasing efficiency of about 8.3% with respect to the launched pump power. This represents the highest emission wavelength delivered by a fiber laser operating at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.