Senescence is a cell stress response induced by replicative, oxidative, oncogenic, and genotoxic stresses. Tumor cells undergo senescence in response to several cancer therapeutics in vitro (Therapy-Induced Senescence, TIS), including agents utilized as neoadjuvant chemotherapy (NAC) in the treatment of invasive breast cancer. TIS has been proposed to contribute to adverse therapy outcomes including relapse. However, there is limited evidence on the induction of senescence in response to NAC in clinical cancer and its contribution to disease outcomes. In this work, the expression of three senescence-associated markers (p21CIP1, H3K9Me3 (histone H3 lysine 9 trimethylation), and Lamin B1) was investigated in breast cancer samples that developed partial or incomplete pathological response to NAC (n=37). Accordingly, 40.54% of all samples showed marker expression consistent with a senescence-like phenotype, while the remainders were either negative or inconclusive for senescence (2.70 and 56.8%, respectively). Moreover, analysis of core-needle biopsies revealed minimal changes in p21CIP1 and H3K9Me3, but significant changes in Lamin B1 expression levels following NAC, highlighting a more predictive role of Lamin B1 in senescence detection. However, our analysis did not establish an association between TIS and cancer relapse as only three patients (8.1%) with a senescence-like profile developed short-term recurrent disease. Our analysis indicates that identification of TIS in tumor samples requires large-scale transcriptomic and protein marker analyses and extended clinical follow-up. Better understanding of in vivo senescence should elucidate its contribution to therapy outcomes and pave the way for the utilization of senolytic approaches as potential adjuvant cancer therapy.
Senescence is a major response to cancer chemotherapy and has been linked to unfavorable therapy outcomes. Lamin B1 is a component of the nuclear lamina that plays a pivotal role in chromatin stability. Downregulation of lamin B1 represents an established biomarker for cellular senescence. However, the protein expression level of lamin B1 in malignant tissue, particularly of the breast, has not been previously described. In this work, we investigated lamin B1 protein expression in normal breast epithelium, malignant breast tissue (including adjacent non-malignant tissue) and in malignant tissue exposed to neoadjuvant chemotherapy (NAC) using immunohistochemistry (IHC) in three patient groups (n = 15, n = 87, and n = 43, respectively). Our results indicate that lamin B1 mean positive expression was 93% in normal breast epithelium and 88% in malignant breast cells, but significantly decreased (mean: 55%, p < 0.001) in malignant breast tissue after exposure to NAC, suggestive of senescence induction. No significant association between lamin B1 expression and other clinicopathological characteristics or survival of breast cancer patients was recorded. To our knowledge, this is the first report that established the baseline protein expression level of lamin B1 in normal and malignant breast tissue, and its reduction following exposure to chemotherapy. In conclusion, lamin B1 downregulation can be used reliably as a component of multiple biomarker batteries to identify therapy-induced senescence (TIS) in clinical cancer.
Objectives: To investigate the expression of programmed death-ligand 1 (PD-L1) in breast cancer in association with incomplete pathological response (PR) to neoadjuvant chemotherapy (NAC). Methods PD-L1 expression was evaluated using immunohistochemistry in post-operative, post-NAC samples of 60 patients ( n = 60) diagnosed with breast invasive ductal carcinoma with incomplete PR to NAC, including 31 matched pre-NAC and post-NAC samples ( n = 31). PD-L1 protein expression was assessed using three scoring approaches, including the tumor proportion score (TPS), the immune cell score (ICS), and the combined tumor and immune cell score (combined positive score, CPS) with a 1% cut-off. Results In the post-operative, post-NAC samples ( n = 60), positive expression rate of PD-L1 was observed in 18.3% (11/60) of cases by TPS, 31.7% (19/60) by ICS, and 25% (15/60) by CPS. In matched samples, positive expression rate of PD-L1 was observed in 19.3% (6/31) of patients by TPS, 51.6% (16/31) by ICS, and 19.3% (6/31) by CPS in pre-NAC specimens, while it was observed in 22.6% (7/31) of matched post-NAC samples by TPS, 22.6% (7/31) by ICS, and 19.3% (6/31) by CPS. In the matched samples, there was a significant decrease in PD-L1 immunoexpression using ICS in post-NAC specimens (McNemar’s, p = 0.020), while no significant differences were found using TPS and CPS between pre- and post-NAC samples ( p = 1.000, p = 0.617; respectively). PD-L1 immunoexpression determined by TPS or CPS was only significantly associated with ER status ( p = 0.022, p = 0.021; respectively), but not with other clinicopathological variables. We could not establish a correlation between PD-L1 expression and the overall survival rate ( p > 0.05). There were no significant differences in the tumor infiltrating lymphocytes count between the paired pre- and post-NAC samples ( t = 0.581, p = 0.563 or Wilcoxon’s Signed Rank test; z = -0.625, p = 0.529). Conclusion Our findings indicate that PD-L1 protein expression in infiltrating immune cells was significantly reduced in breast tumors that developed incomplete PR following the exposure to NAC.
Background: Synchronous bilateral breast cancer (SBBC) provides a special condition where two independent breast tumors are exposed to cancer pharmacotherapy within a uniform pharmacokinetic milieu. Both senescence and apoptosis are established responses to therapy; however, they have potentially variable contributions to the overall outcome of treatment, which are yet to be determined. Methods: In this report, we describe the clinicopathological picture of two SBBC cases that received standard anticancer treatment and assess their expression profile of several molecular hallmarks of senescence and apoptosis. Results: Our analysis identified that synchronous tumors have variable expression profiles of both senescence- and apoptosis-associated biomarkers, despite comparable pathological responses to neoadjuvant chemotherapy and current survival rates. Conclusions: Our results highlight the variable expression of senescence- and apoptosis-associated markers in breast tumors (despite the shared somatic genetic background) and invites a large-scale assessment of both senescence and apoptosis in breast cancer tissue in vivo and their contribution to the pathological response and overall survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.