With the tremendous growth of the Internet and the continuous increase in malicious attacks on corporate networks, Intrusion Detection Systems (IDS) have been designed and adopted by organizations to accurately detect intrusion and other malicious activities. But these IDSs still suffer from setbacks such as False Positives (FP), low detection accuracy and False Negatives (FN). To enhance the performance of IDSs, machine learning classifiers are used to aid detection accuracy and greatly reduce the false positive and false negative rate. In this research we have evaluated six classifiers such as Decision Tree (J48), Random Forest (RF), K-Nearest Neighbor (K-NN), Nave Bayes (NB), Support Vector Machine (SVM) and Artificial Neural Networks (ANN) on three different types of datasets such as NSL-KDD, UNSW-NB15 and Phishing dataset. Our results show that K-NN and J48 are the best performing classifiers when it comes to detection accuracy, testing time and false positive rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.