Increased fluid flow shear stress (FFSS) in solitary kidney alters podocyte function in vivo. FFSS-treated cultured podocytes show upregulated AKT-GSK3β-β-catenin signaling. The present study was undertaken to confirm (i) the activation of β-catenin signaling in podocytes in vivo using unilaterally nephrectomized (UNX) TOPGAL mice with the β-galactosidase reporter gene for β-catenin activation, (ii) β-catenin translocation in FFSS-treated mouse podocytes, and (iii) β-catenin signaling using publicly available data from UNX mice. The UNX of TOPGAL mice resulted in glomerular hypertrophy and increased the mesangial matrix consistent with hemodynamic adaptation. Uninephrectomized TOPGAL mice showed an increased β-galactosidase expression at 4 weeks but not at 12 weeks, as assessed using immunofluorescence microscopy (p < 0.001 at 4 weeks; p = 0.16 at 12 weeks) and X-gal staining (p = 0.008 at 4 weeks; p = 0.65 at 12 weeks). Immunofluorescence microscopy showed a significant increase in phospho-β-catenin (Ser552, p = 0.005) at 4 weeks but not at 12 weeks (p = 0.935) following UNX, and the levels of phospho-β-catenin (Ser675) did not change. In vitro FFSS caused a sustained increase in the nuclear translocation of phospho-β-catenin (Ser552) but not phospho-β-catenin (Ser675) in podocytes. The bioinformatic analysis of the GEO dataset, #GSE53996, also identified β-catenin as a key upstream regulator. We conclude that transcription factor β-catenin mediates FFSS-induced podocyte (glomerular) injury in solitary kidney.
Systemic inflammation in pregnant obese women is associated with 1.5- to 2-fold increase in serum Interleukin-6 (IL-6) and newborns with lower kidney/body weight ratio but the role of IL-6 in increased susceptibility to chronic kidney (CKD) in adult progeny is not known. Since IL-6 crosses the placental barrier, we administered recombinant IL-6 (10 pg/g) to pregnant mice starting at mid-gestation yielded newborns with lower body (p < 0.001) and kidney (p < 0.001) weights. Histomorphometry indicated decreased nephrogenic zone width (p = 0.039) with increased numbers of mature glomeruli (p = 0.002) and pre-tubular aggregates (p = 0.041). Accelerated maturation in IL-6 newborns was suggested by early expression of podocyte-specific protein podocin in glomeruli, increased 5-methyl-cytosine (LC–MS analysis for CpG DNA methylation) and altered expression of certain genes of cell-cycle and apoptosis (RT-qPCR array-analysis). Western blotting showed upregulated pJAK2/pSTAT3. Thus, treating dams with IL-6 as a surrogate provides newborns to study effects of maternal systemic inflammation on future susceptibility to CKD in adulthood.
Increased fluid‐flow shear stress (FFSS) contributes to hyperfiltration‐induced podocyte and glomerular injury resulting in progression of chronic kidney disease (CKD). We reported that increased FFSS in vitro and in vivo upregulates PGE2 receptor EP2 (but not EP4 expression), COX2‐PGE2‐EP2 axis, and EP2‐linked Akt‐GSK3β‐β‐catenin signaling pathway in podocytes. To understand and use the disparities between PGE2 receptors, specific agonists, and antagonists of EP2 and EP4 were used to assess phosphorylation of Akt, GSK3β and β‐catenin in podocytes using Western blotting, glomerular filtration barrier function using in vitro albumin permeability (Palb) assay, and mitigation of hyperfiltration‐induced injury in unilaterally nephrectomized (UNX) mice at 1 and 6 months. Results show an increase in Palb by PGE2, EP2 agonist (EP2AGO) and EP4 antagonist (EP4ANT), but not by EP2 antagonist (EP2ANT) or EP4 agonist (EP4AGO). Pretreatment with EP2ANT blocked the effect of PGE2 or EP2AGO on Palb. Modulation of EP2 and EP4 also induced opposite effects on phosphorylation of Akt and β‐Catenin. Individual agonists or antagonists of EP2 or EP4 did not induce significant improvement in albuminuria in UNX mice. However, treatment with a combination EP2ANT + EP4AGO for 1 or 6 months caused a robust decrease in albuminuria. EP2ANT + EP4AGO combination did not impact adaptive hypertrophy or increased serum creatinine. Observed differences between expression of EP2 and EP4 on the glomerular barrier highlight these receptors as potential targets for intervention. Safe and effective mitigating effect of EP2ANT + EP4AGO presents a novel opportunity to delay the progression of hyperfiltration‐associated CKD as seen in transplant donors.
Hemolytic Uremic Syndrome (HUS) is a constellation of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. Shiga toxin-producing Escherichia coli- (STEC-) mediated HUS is a common cause of acute renal failure in children and can rarely result in severe neurological complications such as encephalopathy, seizures, cerebrovascular accidents, and coma. Current literature supports use of eculizumab, a monoclonal antibody that blocks complement activation, in atypical HUS (aHUS). However, those with neurologic complications from STEC-HUS have complement activation and deposition of aggregates in microvasculature and may be treated with eculizumab. In this case report, we describe a 3-year-old boy with diarrhea-positive STEC-HUS who developed severe neurologic involvement in addition to acute renal failure requiring renal replacement therapy. He was initiated on eculizumab therapy, with clinical improvement and organ recovery. This case highlights systemic complications of STEC-HUS in a pediatric patient. The current literature is limited but has suggested a role for complement mediation in cases with severe complications. We review the importance of early recognition of complications, use of eculizumab, and current data available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.