Most of the systems in the industry contain extreme non-linearity and uncertainties, which are hard to design and control utilizing general nonlinear systems. To conquer this sort of troubles, different plans have been produced in the most recent two decades, among which a popular methodology is Takagi-Sugeno fuzzy control. In this article, we present robust stabilization and control of Takagi-Sugeno (T-S) fuzzy systems with parameter uncertainties and disturbances. Initially, Takagi and Sugeno (TS) fuzzy model is used to represent a nonlinear system. Based on this T-S fuzzy model, fuzzy controller design schemes for state feedback and output feedback is also developed. Then, necessary conditions are derived for robust stabilization in the intelligence of Lyapunov asymptotic stability and are expressed in the arrangement of linear matrix inequalities (LMIs). The proposed system is implemented in the working platform of MATLAB and the simulation results are provided to illustrate the effectiveness of the proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.