Meat and meat products are a fundamental part of the human diet. The protein and vitamin content, as well as essential fatty acids, gives them an appropriate composition to complete the nutritional requirements. However, meat constituents are susceptible to degradation processes. Among them, the most important, after microbial deterioration, are oxidative processes, which affect lipids, pigments, proteins and vitamins. During these reactions a sensory degradation of the product occurs, causing consumer rejection. In addition, there is a nutritional loss that leads to the formation of toxic substances, so the control of oxidative processes is of vital importance for the meat industry. Nonetheless, despite lipid oxidation being widely investigated for decades, the complex reactions involved in the process, as well as the different pathways and factors that influenced them, make that lipid oxidation mechanisms have not yet been completely understood. Thus, this article reviews the fundamental mechanisms of lipid oxidation, the most important oxidative reactions, the main factors that influence lipid oxidation, and the routine methods to measure compounds derived from lipid oxidation in meat.
Previous proteomic analyses established a list of proteins biomarkers of beef tenderness. The present study quantified the relative abundance of 21 of these proteins by dot-blot technique in the Longissimus thoracis and Semitendinosus muscles of 71 young bulls from three breeds: Aberdeen Angus (AA), Limousin (LI), and Blond d'Aquitaine (BA). For both muscles overall tenderness was estimated by sensory analysis; shear force was measured with a Warner-Bratzler instrument, and an index combining sensory and mechanical measurements was calculated. Multiple regressions based on relative abundances of these proteins were used to propose equations of prediction of the three evaluations of tenderness. Hsp70-1B appeared to be a good biomarker of low tenderness in the three breeds and in the two muscles. Proteins such as lactate dehydrogenase-B, myosin heavy chain IIx, and small heat shock proteins (Hsp27, Hsp20, and αB-crystallin) were related to tenderness but inversely according to the muscle and breed. The results demonstrate that prediction of tenderness must take into account muscle characteristics and animal type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.