Regional surface and subsurface mapping of the front range of the Oman Mountains, Salakh Arch's fold-and-thrust belt, is conducted to understand the timing and nature of its deformation and to analyze the main controls on its position, geometry and evolution. The results from this study can be applied to other fold-and-thrust belts, as the area offers surface and subsurface datasets that allow good understanding of its evolution history. The deformation of the outcropping Middle Miocene to Pliocene deposits and the displacement of the Cenozoic seismic reflections imply that folding and thrusting was active during the Neogene and possibly ceased during the Early Quaternary. The palaeostress-tensor analyses from the kinematic fault data along with the fold-axes trends show that the regional transport direction was, overall, directed to the south. Lateral movements over oblique or lateral ramps, between the frontal ramps, have caused local deflections of the regional stress trajectories. The shortening values measured from restored seismic sections were utilized to restore the arch in map view. The restoration indicates that the arch initiated as a primary arc right from the start of deformation. As the shortening proceeded, clockwise and anticlockwise rotations occurred in some areas as a consequence of displacement gradients across adjacent areas along the arch. This rotation was most likely accommodated by angular shear strain, which results in arch-parallel extension or transtension. Various factors have controlled the position, geometry and segmentation of the fold segments in the Salakh Arch. The folds that developed in areas of thicker deformed sediments are wider and more uplifted and advanced to the foreland than the folds that develop in thin deformed sediments. Pre-existing faults were reactivated as lateral and frontal ramps during the arch's evolution. They have contributed in the location and segmentation of the fold patches. On the other hand, the depth-to-detachment measurements and restoration results suggest that the folds detach along the Ediacaran-Early Cambrian Ara Salt. Overall, the deformation in the Salakh Arch could be described as an interaction between thin-and thick-skinned tectonics.
Considering the foreland fold belt of the Salakh Arch in the northern Oman Mountains, predictions made from two-dimensional (2D) restorations and geometrical analyses are tested here to assess the relationship between large-scale folds and small-scale fractures. The Salakh Arch is composed of six anticlines that are interpreted as faulted detachment folds. They have an overall stratigraphy of a 2-km-thick carbonate platform underlain by more than 1.5 km of interbedded sandstone and shale sequences. These sequences are most likely detached on a regionally extensive evaporite horizon. The folding of the Salakh Arch structures most likely occurred during the Neogene Period, and perhaps partly in the early Quaternary Period. This is evident from the thrusting of the Late Neogene Barzaman Formation which was deposited during the Late Neogene Period. Robust outcrop and subsurface fracture data are used to test these predictions. The results from the study indicate that most fractures are related to the orientation of the local structure, with some sets parallel and some sets perpendicular to local hinge lines. Prefolding regional fractures are also widely distributed, and these were mostly formed during the Late Cretaceous Period. Many pre-existing fractures are associated with faults that formed during the Late Cretaceous Period under a NW–SE compression. The local fractures generally have orientations that are consistent with being formed by the flexural slip/flexural flow of fold limbs and tangential longitudinal strains on fold hinges. These structures can be predicted from finite stratal dips, simple curvatures, and three-dimensional (3D) folding restoration maps. The Gaussian curvatures and 3D faulting restoration maps can be used as proxies for fault-related fractures. Local hinge-related fractures may reflect local tangential longitudinal strain during large-scale fold tightening. Fold structures that have formed at an oblique orientation to the regional shortening direction show additional fracture arrays perpendicular to the hinge, indicating weak axial extension. This is presumed to develop as the arcuate thrust belt of Salakh Arch was amplified. The analysis here illustrates the importance of taking a 3D approach, especially for noncylindrical folds. The protocols developed in this study and their results may have general applicability to investigations of fracture patterns in other folds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.