The impact of the renewable distributed generations (RDGs), such as photovoltaic (PV) and wind turbine (WT) systems can be positive or negative on the system, based on the location and size of the DG. So, the correct location and size of DG in the distribution network remain an obstacle to achieving their full possible benefits. Therefore, the future distribution networks with the high penetration of DG power must be planned and operated to improve their efficiency. Thus, this paper presents a new methodology for integrated of renewable energy-based DG units with electrical distribution network. Since the main objective of the proposed methodology is to reduce the power losses and improve the voltage profile of the radial distribution system (RDS). In this regard, the optimization problem was formulated using loss sensitivity factor (LSF), simulated annealing (SA), particle swarm optimization (PSO) and a combination of loss sensitivity index (LSI) with SA & PSO (LSISA, LSIPSO) respectively. This paper contributes a new methodology SAPSO, which prevents the defects of SA & PSO. Optimal placement and sizing of renewable energy-based DG tested on 33-bus system. The results demonstrate the reliability and robustness of the proposed SAPSO algorithm to find the near-optimal position and size of the DG units to mitigate the power losses and improve the radial distribution system's voltage profile.
The purpose of this paper is to address an urgent operational issue referring to optimal power flow (OPF), which is associated with a number of technical and financial aspects relating to issues of environmental concern. In the last few decades, OPF has become one of the most significant issues in nonlinear optimization research. OPF generally improves the performance of electric power distribution, transmission, and production within the constraints of the control system. It is the purpose of an OPF to determine the most optimal way to run a power system. For the power system, OPFs can be created with a variety of financial and technical objectives. Based on these findings, this paper proposes the peafowl optimization algorithm (POA). A powerful meta-heuristic optimization algorithm inspired by collective foraging activities among peafowl swarms. By balancing local exploitation with worldwide exploration, the OPF is able to strike a balance between exploration and exploitation. In order to solve optimization problems involving OPF, using the standard IEEE 14-bus and 57-bus electrical network, a POA has been employed to find the optimal values of the control variables. Further, there are five study cases, namely, reducing fuel costs, real energy losses, voltage skew, fuel cost as well as reducing energy loss and voltage skew, and reducing fuel costs as well as reducing energy loss and voltage deviation, as well as reducing emissions costs. The use of these cases facilitates a fair and comprehensive evaluation of the superiority and effectiveness of POA in comparison with the coot optimization algorithm (COOT), golden jackal optimization algorithm (GJO), heap-based optimizer (HPO), leader slime mold algorithm (LSMA), reptile search algorithm (RSA), sand cat optimization algorithm (SCSO), and the skills optimization algorithm (SOA). Based on simulations, POA has been demonstrated to outperform its rivals, including COOT, GJO, HPO, LSMA, RSA, SCSO, and SOA. In addition, the results indicate that POA is capable of identifying the most appropriate worldwide solutions. It is also successfully investigating preferred search locations, ensuring a fast convergence speed and enhancing the search engine’s capabilities.
Nowadays, the electrical power system has become a more complex, interconnected network that is expanding every day. Hence, the power system faces many problems such as increasing power losses, voltage deviation, line overloads, etc. The optimization of real and reactive power due to the installation of energy resources at appropriate buses can minimize the losses and improve the voltage profile, especially for congested networks. As a result, the optimal distributed generation allocation (ODGA) problem is considered a more proper tool for the processes of planning and operation of power systems due to the power grid changes expeditiously based on the type and penetration level of renewable energy sources (RESs). This paper modifies the AO using a quasi-oppositional-based learning operator to address this problem and reduce the burden on the primary grid, making the grid more resilient. To demonstrate the effectiveness of the MAO, the authors first test the algorithm performance on twenty-three competitions on evolutionary computation benchmark functions, considering different dimensions. In addition, the modified Aquila optimizer (MAO) is applied to tackle the optimal distributed generation allocation (ODGA) problem. The proposed ODGA methodology presented in this paper has a multi-objective function that comprises decreasing power loss and total voltage deviation in a distribution system while keeping the system operating and security restrictions in mind. Many publications investigated the effect of expanding the number of DGs, whereas others found out the influence of DG types. Here, this paper examines the effects of different types and capacities of DG units at the same time. The proposed approach is tested on the IEEE 33-bus in different cases with several multiple DG types, including multi-objectives. The obtained simulation results are compared to the Aquila optimizer, particle swarm optimization algorithm, and trader-inspired algorithm. According to the comparison, the suggested approach provides a superior solution for the ODGA problem with faster convergence in the DNs.
<span>This article proposes a new metaheuristic algorithm called Archimedes optimization algorithm (AOA) for solving optimization problems of optimal power flow (OPF) utilizing the renewable energy sources (RES) for minimizing different single-objective and multi-objective functions based on minimization of fuel cost, power losses of transmission lines, emission and voltage profile improvement. Also, mathematical formulation of (OPF) is introduced by converting the function with multiple objectives based on price and weighting parameters into a single objective function. Also, the effect of optimal RES is merged into the OPF problem. Notably, optimal RES placement yields even more effective solution. AOA was inspired by an intriguing physical law known as Archimedes' Principle. To prove the effectiveness of the AOA proposed algorithm, it compared with different recent algorithms for solving the optimal power flow problems and testing them to one standard system of the IEEE30-bus test system. The superiority of the proposed AOA algorithm is proven also by applying them on the IEEE30-bus modified system with optimal allocation of renewable energy source (RES). The results demonstrate that the proposed algorithm is more successful and efficient than the other optimization methods in the title of resolving OPF problems.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.