In the last few years, a very huge development has occurred in medical techniques using artificial intelligence tools, especially in the diagnosis field. One of the essential things is brain tumor (BT) detection and diagnosis. This kind of disease needs an expert physician to decide on the treatment or surgical operation based on magnetic resonance imaging (MRI) images; therefore, the researchers focus on such kind of medical images analysis and understanding to help the specialist to make a decision. in this work, a new environment has been investigated based on the deep learning method and distributed federated learning (FL) algorithm. The proposed model has been evaluated based on cross-validation techniques using two different standard datasets, BT-small-2c, and BT-large-3c. The achieved classification accuracy was 0.82 and 0.96 consecutively. The proposed classification model provides an active and effective system for assessing BT classification with high reliability and accurate clinical findings.
Cluster-based information retrieval is one of the information retrieval (IR) tools that organize, extract features and categorize the web documents according to their similarity. Unlike traditional approaches, cluster-based IR is fast in processing large datasets of document. To improve the quality of retrieved documents, increase the efficiency of IR and reduce irrelevant documents from user search. In this paper, we proposed a (K-means)hierarchical parallel genetic algorithms approach (HPGA) that combines the K-means clustering algorithm with hybrid PG of multi-deme and master/slave PG algorithms. K-means uses to cluster the population to k subpopulations then take most clusters relevant to the query to manipulate in a parallel way by the two levels of genetic parallelism, thus, irrelevant documents will not be included in subpopulations, as a way to improve the quality of results. Three common datasets (NLP, CISI, and CACM) are used to compute the recall, precision, and F-measure averages. Finally, we compared the precision values of three datasets with Genetic-IR and classic-IR. The proposed approach precision improvements with IR-GA were 45% in the CACM, 27% in the CISI, and 25% in the NLP. While, by comparing with Classic-IR, (K-means)-HPGA got 47% in CACM, 28% in CISI, and 34% in NLP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.