The coronavirus disease 2019 (COVID-19) is spreading globally having a profound effect on lives of millions of people, causing worldwide economic disruption. Curbing the spread of COVID-19 and future pandemics may be accomplished through understanding the environmental context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and adoption of effective detection tools and mitigation policies. This article aims to examine the latest investigations on SARS-CoV-2 plausible environmental transmission modes, employment of wastewater surveillance for early detection of COVID-19, and elucidating the role of solid waste, water, and atmospheric quality on viral infectivity. Transmission of SARS-CoV-2 via faecal-oral or bio-aerosols lacks robust evidence and remains debatable. However, improper disinfection and defected plumbing systems in indoor environments such as hospitals and high-rise towers may facilitate the transport of virus-laden droplets of wastewater causing infection. Clinical and epidemiological studies are needed to present robust evidence that SARS-CoV-2 is transmissible via aerosols, though quantification of virus-laden aerosols at low concentrations presents a challenge. Wastewater surveillance of SARS-CoV-2 can be an effective tool in early detection of outbreak and determination of COVID-19 prevalence within a population, complementing clinical testing and providing decision makers guidance on restricting or relaxing movement. While poor air quality increases susceptibility to diseases, evidence for air pollution impact on COVID-19 infectivity is not available as infections are dynamically changing worldwide. Solid waste generated by households with infected individuals during the lockdown period may facilitate the spread of COVID-19 via fomite transmission route but has received little attention from the scientific community. Water bodies receiving raw sewage may pose risk of infection but this has not been investigated to date. Overall, our understanding of the environmental perspective of SARS-CoV-2 is imperative to detecting outbreak and predicting pandemic severity, allowing us to be equipped with the right tools to curb any future pandemic.
Globally, much weight is currently being placed on agriculture to provide food for the growing population as well as feedstock for the bioenergy industry. Unfortunately, the intensification of agricultural operations to satisfy these growing needs has been associated with a number of environmental and human health risks. A review of publications on the subject was conducted and emphasis was placed on articles focusing on agriculture, environment, and public health as well as their interactions. Supporting information was also gathered from publications of various agricultural and environmental agencies. Agricultural practices with potential negative implications on the environment and human health were identified broadly as: (a) utilization of biosolids and animal manures, (b) use of agricultural chemicals, (c) management of post-harvest residue, (d) irrigation, and (e) tillage operations. Soil, water, and air contamination by nutrients, heavy metals, pathogens, and pesticides, as well as air contamination by particulate matters, noxious gases, and pathogens were among the leading environmental impacts. Some of the human-health impacts identified included neurological and reproductive defects, cardiovascular risks, cancers and other diseases (of kidney, liver, lung, and skin), skin allergies, gastroenteritis, and methemoglobinemia. Continual awareness on the impacts of the reviewed agricultural practices on environmental quality and human health and the implementation of experimentally-backed best management practices in agricultural systems remain indispensable.
Long-term land application of sewage sludge (SS) has caused concern over the potential release of trace metals into the environment following the degradation of organic matter (OM). This study was performed to assess the impact of OM degradation on the relative distribution of Cu, Zn, Pb, and As in SS and SS-amended soils. Three SSs of different ages and two soils treated with SS were subjected to incubation and direct chemical oxidation using diluted HO, followed by a sequential extraction. The majority of Cu, Pb, and As were bound to OM, whereas the majority of Zn was bound with Fe/Mn oxides for all three SSs. Incubation of SS for 6 mo did not result in a substantial decrease in OM content or a change in the relative distribution of Cu, Zn, Pb, and As. Direct OM oxidation to 30 and 70% by diluted HO resulted in a significant decrease in organically bound Cu but increased its exchangeable, carbonate-bound, and Fe/Mn-bound fractions. Oxidation of OM slightly decreased organically bound Zn but significantly increased exchangeable Zn in all SSs. Oxide- and carbonate-bound Zn also decreased following OM oxidation. Exchangeable fractions of As and Pb were minute before and after OM degradation, indicating that release into the environment would be unlikely. The relative distribution of Cu, Zn, Pb, and As in SS-treated soils was similar to that of SS, suggesting a dominant role of SS properties in controlling metal distribution following OM oxidation. Overall, OM oxidation increased the mobility and bioavailability of Zn and Cu, whereas it had less impact on Pb and As.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.